Linux 版的 Intel MKL 的安裝使用
1.下載
https://software.intel.com/en-us/mkl
連結:https://pan.baidu.com/s/1ysHRNqGOhL72YC7KZXU_uA 密碼:8ivh
最新版下載方法請自行研究。
檔名字類似 l_mkl_2017.3.196.tgz
2.安裝
1)解壓至任意目錄(安裝後可刪除)
2)# ./install.sh
預設安裝至 /opt/, 可配置安裝路徑。
3)在 /etc/ld.so.conf.d 下建立名為 intel-mkl.conf 的檔案,內容為
/opt/intel/mkl/lib/intel64 /opt/intel/lib/intel64 然後執行
# ldconfig -v 4) 執行
$ /opt/intel/mkl/bin/mklvars.sh intel64 mod 見:https://software.intel.com/en-us/mkl-linux-developer-guide-scripts-to-set-environment-variables
3.使用 以編譯官方文件上的 dgemm_example.c 為例
#define min(x,y) (((x) < (y)) ? (x) : (y)) #include <stdio.h> #include <stdlib.h> #include "mkl.h" int main() { double *A, *B, *C; int m, n, p, i, j; double alpha, beta; printf ("\n This example computes real matrix C=alpha*A*B+beta*C using \n" " Intel(R) MKL function dgemm, where A, B, and C are matrices and \n" " alpha and beta are double precision scalars\n\n"); m = 2000, p = 200, n = 1000; printf (" Initializing data for matrix multiplication C=A*B for matrix \n" " A(%ix%i) and matrix B(%ix%i)\n\n", m, p, p, n); alpha = 1.0; beta = 0.0; printf (" Allocating memory for matrices aligned on 64-byte boundary for better \n" " performance \n\n"); A = (double *)mkl_malloc( m*p*sizeof( double ), 64 ); B = (double *)mkl_malloc( p*n*sizeof( double ), 64 ); C = (double *)mkl_malloc( m*n*sizeof( double ), 64 ); if (A == NULL || B == NULL || C == NULL) { printf( "\n ERROR: Can't allocate memory for matrices. Aborting... \n\n"); mkl_free(A); mkl_free(B); mkl_free(C); return 1; } printf (" Intializing matrix data \n\n"); for (i = 0; i < (m*p); i++) { A[i] = (double)(i+1); } for (i = 0; i < (p*n); i++) { B[i] = (double)(-i-1); } for (i = 0; i < (m*n); i++) { C[i] = 0.0; } printf (" Computing matrix product using Intel(R) MKL dgemm function via CBLAS interface \n\n"); cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, m, n, p, alpha, A, p, B, n, beta, C, n); printf ("\n Computations completed.\n\n"); printf (" Top left corner of matrix A: \n"); for (i=0; i<min(m,6); i++) { for (j=0; j<min(p,6); j++) { printf ("%12.0f", A[j+i*p]); } printf ("\n"); } printf ("\n Top left corner of matrix B: \n"); for (i=0; i<min(p,6); i++) { for (j=0; j<min(n,6); j++) { printf ("%12.0f", B[j+i*n]); } printf ("\n"); } printf ("\n Top left corner of matrix C: \n"); for (i=0; i<min(m,6); i++) { for (j=0; j<min(n,6); j++) { printf ("%12.5G", C[j+i*n]); } printf ("\n"); } printf ("\n Deallocating memory \n\n"); mkl_free(A); mkl_free(B); mkl_free(C); printf (" Example completed. \n\n"); return 0; } (程式碼下載地址:https://software.intel.com/en-us/product-code-samples) 編譯命令為:
$ gcc -I/opt/intel/mkl/include dgemm_example.c -lmkl_core -lmkl_intel_lp64 -lmkl_intel_thread -liomp5 -lpthread -lm -L/opt/intel/mkl/lib/intel64 -L/opt/intel/lib/intel64
或者
$ gcc -I/opt/intel/mkl/include dgemm_example.c -lmkl_rt -L/opt/intel/mkl/lib/intel64 -L/opt/intel/lib/intel64
再或者
$ . /opt/intel/bin/compilervars.sh intel64
$ gcc dgemm_example.c -lmkl_rt
(此方法可行是因為前一個命令設定了環境變數 CPATH,LD_LIBRARY_PATH,LIBRARY_PATH,致使編譯器可以找到所需的標頭檔案和庫檔案。編譯C時標頭檔案查詢 C_INCLUDE_PATH 中包含目錄,C++ 查詢 CPLUS_INCLUDE_PATH,C和C++都查詢 CPATH)
連結MKL的庫的方法見:https://software.intel.com/en-us/mkl-linux-developer-guide-linking-your-application-with-the-intel-math-kernel-library
(學習文件:https://software.intel.com/en-us/get-started-with-mkl-for-linux ,https://software.intel.com/en-us/mkl-linux-developer-guide)
後記:
Intel的MPI庫的安裝方法與MKL相同,執行 compilervars.sh 之後即可編譯使用了MPI庫的檔案。
gmres_test.c
/* Example to show how to use Intel's FGMRES with preconditioner to solve the linear system Ax=b in MPI. * Based on Intel's example: solverc/source/fgmres_full_funct_c.c * For CS51501 HW3 Part b * * Please read Intel Reference Manual, Chapter 6 Sparse Solve Routine, FGMRES Interface Description for the detail information. */ #include <stdio.h> #include "mkl.h" #include "mpi.h" #define MASTER 0 // taskid of first task #define RESTART 500 #define TOL 0.00000001 #define MAXIT 1000 void mpi_dgemv(const MKL_INT m, const MKL_INT local_m, const double *A, const double *u, double *v, double *local_u, double *local_v, int taskid, MPI_Comm comm); void mpi_preconditioner_solver(const MKL_INT m, const MKL_INT local_m, const double *local_M, const double *u, double *v, double *local_u, int taskid, MPI_Comm comm); int main(int argc, char *argv[]) { int taskid; // a task identifier int numtasks; // number of tasks in partition MPI_Comm comm; int m; // size of the matrix int local_m; // rows of matrix A sent to each worker double *A, *b, *exact_x, *x; double *temp_1, *temp_2; double *local_A, *local_v, *local_u; double *local_M; // M is the preconditioner in this example, which is the diagonal element of A; int i, j, k; MPI_Init(&argc, &argv); comm = MPI_COMM_WORLD; MPI_Comm_rank(comm, &taskid); MPI_Comm_size(comm, &numtasks); if (taskid == MASTER) { // initilization: A and b /* start modification 1: read A and b from mtx files in node 0 */ m = 64; // size of the matrix A = malloc(sizeof(double) * (m * m)); // !!! A is in col-major for (j = 0; j < m; j++) for (i = 0; i < m; i++) { if (i == j) *(A + j * m + i) = m * 100.0; else *(A + j * m + i) = i + 1.0; } exact_x = malloc(sizeof(double) * m); for (i = 0; i < m; i++) *(exact_x + i) = 1.0; b = malloc(sizeof(double) * m); // b=A*ones(n,1) cblas_dgemv(CblasColMajor, CblasNoTrans, m, m, 1.0, A, m, exact_x, 1, 0.0, b, 1); /* end modification 1 */ } MPI_Bcast(&m, 1, MPI_INT, MASTER, comm); // send m from node MASTER to all other nodes. local_m = m / numtasks; local_A = malloc(sizeof(double) * (local_m * m)); local_u = malloc(sizeof(double) * (local_m)); local_v = malloc(sizeof(double) * m); // partition A and send A_i to local_A on node i MPI_Scatter(A, local_m * m, MPI_DOUBLE, local_A, local_m * m, MPI_DOUBLE, MASTER, comm); if (taskid == MASTER) { free(A); free(exact_x); // do not free b, it wil be used for GMRES } /* start modification 2: generate preconditioner M * In this example, TA choose the diagonal elements of A as the preconditioner. * In HW3 part b, you should generate L and U here. */ local_M = malloc(sizeof(double) * local_m); for (i = 0; i < local_m; i++) *(local_M + i) = *(local_A + taskid * local_m + i * m + i); /* end modification 2 */ /*--------------------------------------------------------------------------- * GMRES: Allocate storage for the ?par parameters and the solution vectors *---------------------------------------------------------------------------*/ MKL_INT RCI_request; int RCI_flag; double dvar; int flag = 0; MKL_INT ipar[128]; //specifies the integer set of data for the RCI FGMRES computations double dpar[128]; // specifies the double precision set of data double *tmp; //used to supply the double precision temporary space for theRCI FGMRES computations, specifically: double *computed_solution; double *residual; double *f; MKL_INT itercount, ierr = 0;; MKL_INT ivar; double b_2norm; char cvar = 'N'; MKL_INT incx = 1; if (taskid == MASTER) { ipar[14] = RESTART; // restart iteration number int n_tmp = (2 * ipar[14] + 1) * m + ipar[14] * (ipar[14] + 9) / 2 + 1; tmp = (double *) malloc(sizeof(double) * n_tmp); computed_solution = (double *) malloc(sizeof(double) * m); residual = (double *) malloc(sizeof(double) * m); f = (double *) malloc(sizeof(double) * m); ivar = m; /*--------------------------------------------------------------------------- * Initialize the initial guess *---------------------------------------------------------------------------*/ for (i = 0; i < m; i++) { computed_solution[i] = 0.5; } b_2norm = cblas_dnrm2(ivar, b, incx); // printf("b_2norm=%f\n",b_2norm); /*--------------------------------------------------------------------------- * Initialize the solver *---------------------------------------------------------------------------*/ dfgmres_init(&ivar, computed_solution, b, &RCI_request, ipar, dpar, tmp); RCI_flag = RCI_request; } MPI_Bcast(&RCI_flag, 1, MPI_INT, MASTER, comm); if (RCI_flag != 0) goto FAILED; if (taskid == MASTER) { /*--------------------------------------------------------------------------- * GMRES: Set the desired parameters: *---------------------------------------------------------------------------*/ ipar[14] = RESTART; // restart iteration number ipar[7] = 1; //do the stopping test ipar[10] = 1; // use preconditioner dpar[0] = TOL; /*--------------------------------------------------------------------------- * Check the correctness and consistency of the newly set parameters *---------------------------------------------------------------------------*/ dfgmres_check(&ivar, computed_solution, b, &RCI_request, ipar, dpar, tmp); RCI_flag = RCI_request; } MPI_Bcast(&RCI_flag, 1, MPI_INT, MASTER, comm); if (RCI_flag != 0) goto FAILED; if (taskid == MASTER) { /*--------------------------------------------------------------------------- * Print the info about the RCI FGMRES method *---------------------------------------------------------------------------*/ printf("Some info about the current run of RCI FGMRES method:\n\n"); if (ipar[7]) { printf("As ipar[7]=%d, the automatic test for the maximal number of ", ipar[7]); printf("iterations will be\nperformed\n"); } else { printf("As ipar[7]=%d, the automatic test for the maximal number of ", ipar[7]); printf("iterations will be\nskipped\n"); } printf("+++\n"); if (ipar[8]) { printf("As ipar[8]=%d, the automatic residual test will be performed\n", ipar[8]); } else { printf("As ipar[8]=%d, the automatic residual test will be skipped\n", ipar[8]); } printf("+++\n"); if (ipar[9]) { printf("As ipar[9]=%d, the user-defined stopping test will be ", ipar[9]); printf("requested via\nRCI_request=2\n"); } else { printf("As ipar[9]=%d, the user-defined stopping test will not be ", ipar[9]); printf("requested, thus,\nRCI_request will not take the value 2\n"); } printf("+++\n"); if (ipar[10]) { printf("As ipar[10]=%d, the Preconditioned FGMRES iterations will be ", ipar[10]); printf("performed, thus,\nthe preconditioner action will be requested via "); printf("RCI_request=3\n"); } else { printf("As ipar[10]=%d, the Preconditioned FGMRES iterations will not ", ipar[10]); printf("be performed,\nthus, RCI_request will not take the value 3\n"); } printf("+++\n"); if (ipar[11]) { printf("As ipar[11]=%d, the automatic test for the norm of the next ", ipar[11]); printf("generated vector is\nnot equal to zero up to rounding and "); printf("computational errors will be performed,\nthus, RCI_request will not "); printf("take the value 4\n"); } else { printf("As ipar[11]=%d, the automatic test for the norm of the next ", ipar[11]); printf("generated vector is\nnot equal to zero up to rounding and "); printf("computational errors will be skipped,\nthus, the user-defined test "); printf("will be requested via RCI_request=4\n"); } printf("+++\n\n"); } /*--------------------------------------------------------------------------- * Compute the solution by RCI (P)FGMRES solver with preconditioning * Reverse Communication starts here *---------------------------------------------------------------------------*/ ONE: if (taskid == MASTER) { dfgmres(&ivar, computed_solution, b, &RCI_request, ipar, dpar, tmp); RCI_flag = RCI_request; } MPI_Bcast(&RCI_flag, 1, MPI_INT, MASTER, comm); // send RCI_request from node MASTER to all other nodes. /*--------------------------------------------------------------------------- * If RCI_request=0, then the solution was found with the required precision *---------------------------------------------------------------------------*/ if (RCI_flag == 0) goto COMPLETE; /*--------------------------------------------------------------------------- * If RCI_request=1, then compute the vector A*tmp[ipar[21]-1] * and put the result in vector tmp[ipar[22]-1] *--------------------------------------------------------------------------- * NOTE that ipar[21] and ipar[22] contain FORTRAN style addresses, * therefore, in C code it is required to subtract 1 from them to get C style * addresses *---------------------------------------------------------------------------*/ if (RCI_flag == 1) { if (taskid == MASTER) { temp_1 = &tmp[ipar[21] - 1]; temp_2 = &tmp[ipar[22] - 1]; } mpi_dgemv(m, local_m, local_A, temp_1, temp_2, local_u, local_v, taskid, comm); goto ONE; } /*--------------------------------------------------------------------------- * If RCI_request=2, then do the user-defined stopping test * The residual stopping test for the computed solution is performed here *--------------------------------------------------------------------------- */ if (RCI_flag == 2) { /* Request to the dfgmres_get routine to put the solution into b[N] via ipar[12] -------------------------------------------------------------------------------- WARNING: beware that the call to dfgmres_get routine with ipar[12]=0 at this stage may destroy the convergence of the FGMRES method, therefore, only advanced users should exploit this option with care */ if (taskid == MASTER) { ipar[12] = 1; /* Get the current FGMRES solution in the vector f */ dfgmres_get(&ivar, computed_solution, f, &RCI_request, ipar, dpar, tmp, &itercount); temp_1 = f; temp_2 = residual; } /* Compute the current true residual via mpi mat_vec multiplication */ mpi_dgemv(m, local_m, local_A, temp_1, temp_2, local_u, local_v, taskid, comm); if (taskid == MASTER) { dvar = -1.0E0; cblas_daxpy(ivar, dvar, b, incx, residual, incx); dvar = cblas_dnrm2(ivar, residual, incx); printf("iteration %d, relative residual:%e\n", itercount, dvar); } MPI_Bcast(&dvar, 1, MPI_DOUBLE, MASTER, comm); if (dvar < TOL) { goto COMPLETE; } else goto ONE; } /*--------------------------------------------------------------------------- * If RCI_request=3, then apply the preconditioner on the vector * tmp[ipar[21]-1] and put the result in vector tmp[ipar[22]-1] *--------------------------------------------------------------------------- * NOTE that ipar[21] and ipar[22] contain FORTRAN style addresses, * therefore, in C code it is required to subtract 1 from them to get C style * addresses *---------------------------------------------------------------------------*/ if (RCI_flag == 3) { if (taskid == MASTER) { temp_1 = &tmp[ipar[21] - 1]; temp_2 = &tmp[ipar[22] - 1]; } /* start modification 3: solve L U temp_2 = temp_1 */ mpi_preconditioner_solver(m, local_m, local_M, temp_1, temp_2, local_u, taskid, comm); /* end modification 3 */ goto ONE; } /*--------------------------------------------------------------------------- * If RCI_request=4, then check if the norm of the next generated vector is * not zero up to rounding and computational errors. The norm is contained * in dpar[6] parameter *---------------------------------------------------------------------------*/ if (RCI_flag == 4) { if (taskid == MASTER) dvar = dpar[6]; MPI_Bcast(&dvar, 1, MPI_DOUBLE, MASTER, comm); if (dvar < 1.0E-12) { goto COMPLETE; } else goto ONE; } /*--------------------------------------------------------------------------- * If RCI_request=anything else, then dfgmres subroutine failed * to compute the solution vector: computed_solution[N] *---------------------------------------------------------------------------*/ else { goto FAILED; } /*--------------------------------------------------------------------------- * Reverse Communication ends here * Get the current iteration number and the FGMRES solution (DO NOT FORGET to * call dfgmres_get routine as computed_solution is still containing * the initial guess!). Request to dfgmres_get to put the solution * into vector computed_solution[N] via ipar[12] *---------------------------------------------------------------------------*/ COMPLETE:if (taskid == MASTER) { ipar[12] = 0; dfgmres_get(&ivar, computed_solution, b, &RCI_request, ipar, dpar, tmp, &itercount); /*--------------------------------------------------------------------------- * Print solution vector: computed_solution[N] and the number of iterations: itercount *---------------------------------------------------------------------------*/ printf("The system has been solved in %d iterations \n", itercount); printf("The following solution has been obtained (first 4 elements): \n"); for (i = 0; i < 4; i++) { printf("computed_solution[%d]=", i); printf("%e\n", computed_solution[i]); } /*-------------------------------------------------------------------------*/ /* Release internal MKL memory that might be used for computations */ /* NOTE: It is important to call the routine below to avoid memory leaks */ /* unless you disable MKL Memory Manager */ /*-------------------------------------------------------------------------*/ MKL_Free_Buffers(); temp_1 = computed_solution; temp_2 = residual; } // compute the relative residual mpi_dgemv(m, local_m, local_A, temp_1, temp_2, local_u, local_v, taskid, comm); if (taskid == MASTER) { dvar = -1.0E0; cblas_daxpy(ivar, dvar, b, incx, residual, incx); dvar = cblas_dnrm2(ivar, residual, incx); printf("relative residual:%e\n", dvar / b_2norm); if (itercount < MAXIT && dvar < TOL) flag = 0; //success else flag = 1; //fail } MPI_Bcast(&flag, 1, MPI_INT, MASTER, comm); free(local_A); free(local_M); free(local_u); free(local_v); if (taskid == MASTER) { free(tmp); free(b); free(computed_solution); free(residual); } if (flag == 0) { MPI_Finalize(); return 0; } else { MPI_Finalize(); return 1; } /* Release internal MKL memory that might be used for computations */ /* NOTE: It is important to call the routine below to avoid memory leaks */ /* unless you disable MKL Memory Manager */ /*-------------------------------------------------------------------------*/ FAILED: if (taskid == MASTER) { printf("\nThis example FAILED as the solver has returned the ERROR code %d", RCI_request); MKL_Free_Buffers(); } free(local_A); free(local_M); free(local_u); free(local_v); if (taskid == MASTER) { free(tmp); free(b); free(computed_solution); free(residual); } MPI_Finalize(); return 1; } void mpi_dgemv(const MKL_INT m, const MKL_INT local_m, const double *local_A, const double *u, double *v, double *local_u, double *local_v, int taskid, MPI_Comm comm) { // compute v=A*u in MPI CBLAS_LAYOUT layout = CblasColMajor; //col major CBLAS_TRANSPOSE trans = CblasNoTrans; // no transfer MPI_Scatter(u, local_m, MPI_DOUBLE, local_u, local_m, MPI_DOUBLE, MASTER, comm); // send u_i from node MASTER to all other nodes. // printf("scatter finish at taskid=%d\n",taskid); // compute A_i cblas_dgemv(layout, trans, m, local_m, 1.0, local_A, m, local_u, 1, 0.0, local_v, 1); // Apply a reduction operation on all nodes and place the result in vector v. MPI_Reduce(local_v, v, m, MPI_DOUBLE, MPI_SUM, MASTER, comm); } void mpi_preconditioner_solver(const MKL_INT m, const MKL_INT local_m, const double *local_M, const double *u, double *v, double *local_u, int taskid, MPI_Comm comm) { int i = 0; // printf("begin taskid=%d\n",taskid); MPI_Scatter(u, local_m, MPI_DOUBLE, local_u, local_m, MPI_DOUBLE, MASTER, comm); // send u_i from node MASTER to all other nodes. // printf("taskid=%d\n",taskid); //compute Mi^(-1)*y_i at each node for (i = 0; i < local_m; i++) *(local_u + i) /= *(local_M + i); // Apply a gather operation on all nodes MPI_Gather(local_u, local_m, MPI_DOUBLE, v, local_m, MPI_DOUBLE, MASTER, comm); }
$ . /opt/intel/bin/compilervars.sh intel64 $ mpicc gmres_test.c -o gmres_test -lmkl_rt
--------------------- 作者:chenjun15 來源:CSDN 原文:https://blog.csdn.net/chenjun15/article/details/75041932 版權宣告:本文為博主原創文章,轉載請附上博文連結!