「Deep Learning」Note on Benchmark Analysis of DNNs
[1] Benchmark Analysis of Representative Deep Neural Network Architectures IEEE Access 2018 [paper]
相關推薦
「Deep Learning」Note on Benchmark Analysis of DNNs
[1] Benchmark Analysis of Representative Deep Neural Network Architectures IEEE Access 2018 [paper]
「Deep Learning」Note on Gather and Excite Network (GENet)
QQ Group: 428014259 Sina Weibo:小鋒子Shawn Tencent E-mail:[email protected] http://blog.csdn.net/dgyuanshaofeng/article/details/84179196 SEN
「Deep Learning」Note on Deep Semantic Instance Segmentation of Tree-like Structures
QQ Group: 428014259 Sina Weibo:小鋒子Shawn Tencent E-mail:[email protected] http://blog.csdn.net/dgyuanshaofeng/article/details/83904021 [1]
「Deep Learning」Note on Activation Functions
QQ Group: 428014259 Sina Weibo:小鋒子Shawn Tencent E-mail:[email protected] http://blog.csdn.net/dgyuanshaofeng/article/details/83903998 [1]
「Deep Learning」Note on Deep Convolutinal Activation Feature (DeCAF)
QQ Group: 428014259 Sina Weibo:小鋒子Shawn Tencent E-mail:[email protected] http://blog.csdn.net/dgyuanshaofeng/article/details/84481947 [1]
「Deep Learning」Note on LeNet-5
[1] Gradient-based Learning Applied to Document Recognition Proceedings of the IEEE 1998 [paper]
「Deep Learning」Note on Rethinking ImageNet Pre-training
作者:Kaiming He, Ross Girshick, Piotr Dollár 單位:Facebook AI Research (FAIR) 0 摘要 在物體檢測和例項分割中,以COCO資料集為研究物件,探索從隨機初始化情況中訓練標準模型,並且取得有競爭
「Transfer Learning」Note on Strategic Curriculum of Proxy Labels
QQ Group: 428014259 Sina Weibo:小鋒子Shawn Tencent E-mail:[email protected] http://blog.csdn.net/dgyuanshaofeng/article/details/83834130 [1]
「Deep Learning」Notes on Squeeze-and-Excitation Network (SENet)
QQ Group: 428014259 Sina Weibo:小鋒子Shawn Tencent E-mail:[email protected] http://blog.csdn.net/dgyuanshaofeng/article/details/84179554 [1]
「Deep Learning」Notes on Bottleneck Attention Module (BAM)
QQ Group: 428014259 Sina Weibo:小鋒子Shawn Tencent E-mail:[email protected] http://blog.csdn.net/dgyuanshaofeng/article/details/84180118 [1]
「Transfer Learning」Note on Geometrically Guided Input-Output Adaptation
QQ Group: 428014259 Sina Weibo:小鋒子Shawn Tencent E-mail:[email protected] http://blog.csdn.net/dgyuanshaofeng/article/details/84995788 [1]
「Transfer Learning」Note on CyCADA: Cycle-Consistent Adversarial Domain Adaptation
雖然CyCADA[1]被AdaptSegNet超越了,但是兩者可以結合在一起,進一步提升域適配中語義分割的效能。在沒有AdaptSegnNet的時候,CyCADA是很好的模型。在CyCADA論文的第三個版本中,發現DRN-26[2]比AdaptSegNet中D
「Machine Learning」Note on MSL: Marginal Space Learning (投影空間學習)
[1] Four-Chamber Heart Modeling and Automatic Segmentation for 3-D Cardiac CT Volumes Using Marginal
「Computer Vision」Note on Faster Training of Mask R-CNN
QQ Group: 428014259 Sina Weibo:小鋒子Shawn Tencent E-mail:[email protected] http://blog.csdn.net/dgyuanshaofeng/article/details/84995989 [1]
「Deep Learning」理解PyTorch中的「torchvision.transforms」
QQ Group: 428014259 Sina Weibo:小鋒子Shawn Tencent E-mail:[email protected] http://blog.csdn.net/dgyuanshaofeng/article/details/84076608 閱讀的
BAT資深演算法工程師「Deep Learning」讀書系列分享(一) | 分享總結
本文轉載自:https://www.leiphone.com/news/201708/LEBNjZzvm0Q3Ipp0.html 雷鋒網 AI 科技評論按:「Deep Learning」這本書是機器學習領域的重磅書籍,三位作者分別是機器學習界名人、GAN的提出者、谷歌大腦研究科學家 Ian
「Computer Vision」Note on Attention-guided Unified Network
QQ Group: 428014259 Sina Weibo:小鋒子Shawn Tencent E-mail:[email protected] http://blog.csdn.net/dgyuanshaofeng/article/details/84962899 [1]
「Computer Vision」Note on Facial Landmark Machines
QQ Group: 428014259 Sina Weibo:小鋒子Shawn Tencent E-mail:[email protected] http://blog.csdn.net/dgyuanshaofeng/article/details/84962877 [1]
「Computer Vision」Note on Feature Denoising
QQ Group: 428014259 Sina Weibo:小鋒子Shawn Tencent E-mail:[email protected] http://blog.csdn.net/dgyuanshaofeng/article/details/84962796 [1]
「Computer Vision」Note on SlowFast Networks
QQ Group: 428014259 Sina Weibo:小鋒子Shawn Tencent E-mail:[email protected] http://blog.csdn.net/dgyuanshaofeng/article/details/84962772 [1]