1. 程式人生 > >例項解析linux核心I2C體系結構(2)

例項解析linux核心I2C體系結構(2)

四、在核心裡寫i2c裝置驅動的兩種方式

在一文介紹了利用/dev/i2c-0在應用層完成對i2c裝置的操作,但很多時候我們還是習慣為i2c裝置在核心層編寫驅動程式。目前核心支援兩種編寫i2c驅動程式的方式。下面分別介紹這兩種方式的實現。這裡分別稱這兩種方式為“Adapter方式(LEGACY)”和“Probe方式(new style)”。

(1) Adapter方式(LEGACY)

(下面的例項程式碼是在2.6.27核心的pca953x.c基礎上修改的,原始程式碼採用的是本文將要討論的第2種方式,即Probe方式)

●    構建i2c_driver

static struct i2c_driver pca953x_driver = {                 .driver = {                                     .name= "pca953x", //名稱                                 },                 .id= ID_PCA9555,//id號                 .attach_adapter= pca953x_attach_adapter, //呼叫介面卡連線裝置                 .detach_client= pca953x_detach_client,//讓裝置脫離介面卡         };

●    註冊i2c_driver

static int __init pca953x_init(void)         {                 return i2c_add_driver(&pca953x_driver);         }         module_init(pca953x_init);

●    attach_adapter動作

執行i2c_add_driver(&pca953x_driver)後會,如果核心中已經註冊了i2c介面卡,則順序呼叫這些介面卡來連線我們的i2c裝置。此過程是通過呼叫i2c_driver中的attach_adapter方法完成的。具體實現形式如下:

static int pca953x_attach_adapter(struct i2c_adapter *adapter)         {                 return i2c_probe(adapter, &addr_data, pca953x_detect);                 /*                 adapter:介面卡                 addr_data:地址資訊                 pca953x_detect:探測到裝置後呼叫的函式                 */         }

地址資訊addr_data是由下面程式碼指定的。         /* Addresses to scan */         static unsigned short normal_i2c[] = {0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27,I2C_CLIENT_END};         I2C_CLIENT_INSMOD;

注意:normal_i2c裡的地址必須是你i2c晶片的地址。否則將無法正確探測到裝置。而I2C_ CLIENT_INSMOD是一個巨集,它會利用normal_i2c構建addr_data。

●    構建i2c_client,並註冊字元裝置驅動

i2c_probe在探測到目標裝置後,後呼叫pca953x_detect,並把當時的探測地址address作為引數傳入。

static int pca953x_detect(struct i2c_adapter *adapter, int address, int kind)         {                 struct i2c_client *new_client;                 struct pca953x_chip *chip; //裝置結構體                 int err = 0,result;                 dev_t pca953x_dev=MKDEV(pca953x_major,0);//構建裝置號,根據具體情況設定,這裡我只考慮了normal_i2c中只有一個地址匹配的情況。                 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA| I2C_FUNC_SMBUS_WORD_DATA))//判定介面卡能力                 goto exit;                 if (!(chip = kzalloc(sizeof(struct pca953x_chip), GFP_KERNEL))) {                         err = -ENOMEM;                         goto exit;                 }                 /****構建i2c-client****/                 chip->client=kzalloc(sizeof(struct i2c_client),GFP_KERNEL);                 new_client = chip->client;                 i2c_set_clientdata(new_client, chip);                 new_client->addr = address;                 new_client->adapter = adapter;                 new_client->driver = &pca953x_driver;                 new_client->flags = 0;                 strlcpy(new_client->name, "pca953x", I2C_NAME_SIZE);                 if ((err = i2c_attach_client(new_client)))//註冊i2c_client                 goto exit_kfree;                 if (err)                 goto exit_detach;                 if(pca953x_major)                 {                         result=register_chrdev_region(pca953x_dev,1,"pca953x");                 }                 else{                         result=alloc_chrdev_region(&pca953x_dev,0,1,"pca953x");                         pca953x_major=MAJOR(pca953x_dev);                 }                 if (result < 0) {                         printk(KERN_NOTICE "Unable to get pca953x region, error %d\n", result);                         return result;                 }                 pca953x_setup_cdev(chip,0); //註冊字元裝置,此處不詳解                 return 0;                 exit_detach:                 i2c_detach_client(new_client);         exit_kfree:                 kfree(chip);         exit:                 return err;         }

i2c_check_functionality用來判定設配器的能力,這一點非常重要。你也可以直接檢視對應設配器的能力,如

static const struct i2c_algorithm smbus_algorithm = {                 .smbus_xfer= i801_access,                 .functionality= i801_func,         };         static u32 i801_func(struct i2c_adapter *adapter)         {                         return I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SMBUS_BYTE |                     I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA |                 I2C_FUNC_SMBUS_BLOCK_DATA | I2C_FUNC_SMBUS_WRITE_I2C_BLOCK                                 | (isich4 ? I2C_FUNC_SMBUS_HWPEC_CALC : 0);         }

●    字元驅動的具體實現

struct file_operations pca953x_fops = {                 .owner = THIS_MODULE,                 .ioctl= pca953x_ioctl,                  .open= pca953x_open,                  .release =pca953x_release,          };

字元裝置驅動本身沒有什麼好說的,這裡主要想說一下,如何在驅動中呼叫i2c設配器幫我們完成資料傳輸。

目前設配器主要支援兩種傳輸方法:smbus_xfer和master_xfer。一般來說,如果設配器支援了master_xfer那麼它也可以模擬支援smbus的傳輸。但如果只實現smbus_xfer,則不支援一些i2c的傳輸。

int (*master_xfer)(struct i2c_adapter *adap,struct i2c_msg *msgs,int num);         int (*smbus_xfer) (struct i2c_adapter *adap, u16 addr,                                                                                 unsigned short flags, char read_write,                                                                 u8 command, int size, union i2c_smbus_data * data);

master_xfer中的引數設定,和前面的使用者空間程式設計一致。現在只是要在驅動中構建相關的引數然後呼叫i2c_transfer來完成傳輸既可。

int i2c_transfer(struct i2c_adapter * adap, struct i2c_msg *msgs, int num)

smbus_xfer中的引數設定及呼叫方法如下:

static int pca953x_write_reg(struct pca953x_chip *chip, int reg, uint16_t val)         {                 int ret;                 ret = i2c_smbus_write_word_data(chip->client, reg << 1, val);                 if (ret < 0) {                                 dev_err(&chip->client->dev, "failed writing register\n");                                         return -EIO;                                 }                 return 0;         }

上面函式完成向晶片的地址為reg的暫存器寫一個16bit的資料。i2c_smbus_write_word_data的實現如下:

s32 i2c_smbus_write_word_data(struct i2c_client *client, u8 command, u16 value)         {                 union i2c_smbus_data data;                 data.word = value;                 return i2c_smbus_xfer(client->adapter,client->addr,client->flags,                                                                         I2C_SMBUS_WRITE,command,                                                                         I2C_SMBUS_WORD_DATA,&data);         }

從中可以看出smbus傳輸一個16位資料的方法。其它操作如:字元寫、字元讀、字讀、塊操作等,可以參考核心的i2c-core.c中提供的方法。

●    登出i2c_driver

static void __exit pca953x_exit(void)         {                 i2c_del_driver(&pca953x_driver);         }         module_exit(pca953x_exit);

●    detach_client動作

順序呼叫核心中註冊的介面卡來斷開我們註冊過的i2c裝置。此過程通過呼叫i2c_driver中的attach_adapter方法完成的。具體實現形式如下:

static int pca953x_detach_client(struct i2c_client *client)         {                 int err;                 struct pca953x_chip *data;                 if ((err = i2c_detach_client(client)))//斷開i2c_client                 return err;                 data=i2c_get_clientdata(client);                 cdev_del(&(data->cdev));                 unregister_chrdev_region(MKDEV(pca953x_major, 0), 1);                 kfree(data->client);                 kfree(data);                 return 0;         }

(2) Probe方式(new style)

●    構建i2c_driver

和LEGACY方式一樣,也需要構建i2c_driver,但是內容有所不同。

static struct i2c_driver pca953x_driver = {                 .driver = {                         .name= "pca953x",                         },                         .probe= pca953x_probe, //當有i2c_client和i2c_driver匹配時呼叫                         .remove= pca953x_remove,//登出時呼叫                         .id_table= pca953x_id,//匹配規則         };

●    註冊i2c_driver

static int __init pca953x_init(void)         {                 return i2c_add_driver(&pca953x_driver);         }         module_init(pca953x_init);

在註冊i2c_driver的過程中,是將driver註冊到了i2c_bus_type的總線上。此匯流排的匹配規則是:

static const struct i2c_device_id *i2c_match_id(const struct i2c_device_id *id,                                                                                                 const struct i2c_client *client)         {                 while (id->name[0]) {                         if (strcmp(client->name, id->name) == 0)                                 return id;                         id++;                 }                 return NULL;         }

可以看出是利用i2c_client的名稱和id_table中的名稱做匹配的。本驅動中的id_table為

static const struct i2c_device_id pca953x_id[] = {                 { "pca9534", 8, },                 { "pca9535", 16, },                 { "pca9536", 4, },                 { "pca9537", 4, },                 { "pca9538", 8, },                 { "pca9539", 16, },                 { "pca9554", 8, },                 { "pca9555", 16, },                 { "pca9557", 8, },                 { "max7310", 8, },                 { }         };

看到現在我們應該會有這樣的疑問,在Adapter模式中,i2c_client是我們自己構造出來的,而現在的i2c_client是從哪來的呢?看看下面的解釋

●    註冊i2c_board_info

對於Probe模式,通常在平臺程式碼中要完成i2c_board_info的註冊。方法如下:

static struct i2c_board_info __initdata test_i2c_devices[] = {                 {                         I2C_BOARD_INFO("pca9555", 0x27),//pca9555為晶片名稱,0x27為晶片地址                         .platform_data = &pca9555_data,                 }, {                         I2C_BOARD_INFO("mt9v022", 0x48),                         .platform_data = &iclink[0], /* With extender */                 }, {                         I2C_BOARD_INFO("mt9m001", 0x5d),                         .platform_data = &iclink[0], /* With extender */                 },         };         i2c_register_board_info(0, test_i2c_devices,ARRAY_SIZE(test_i2c_devices)); //註冊

i2c_client就是在註冊過程中構建的。但有一點需要注意的是i2c_register_board_info並沒有EXPORT_SYMBOL給模組使用。

●    字元驅動註冊

在Probe方式下,新增字元驅動的位置在pca953x_probe中。

static int __devinit pca953x_probe(struct i2c_client *client,const struct i2c_device_id *id)         {                         ……                         /****字元裝置驅動註冊位置****/                         ……                         return 0;         }

●    登出i2c_driver

static void __exit pca953x_exit(void)         {                 i2c_del_driver(&pca953x_driver);         }         module_exit(pca953x_exit);

●    登出字元裝置驅動

在Probe方式下,登出字元驅動的位置在pca953x_remove中。

static int __devinit pca953x_remove (struct i2c_client *client)         {                 ……                 /****字元裝置驅動登出的位置****/                 ……                 return 0;         }

●    I2C裝置的資料互動方法(即:呼叫介面卡操作裝置的方法)和Adapter方式下相同。