深度學習在影象領域的應用
深度學習在影象領域的應用
隨著深度學習近幾年的火熱發展,在計算機視覺,影象理解方向上,應用越來越廣泛。我們總結了在視覺領域的一些方向上基於深度學習的優秀演算法。包括物體檢測、物體識別、人臉世界、分割、跟蹤、邊緣檢測、影象復原(去雨、去霧)、影象編輯等。
檢測
1. 單一物體檢測
MTCNN: https://github.com/kpzhang93/MTCNN_face_detection_alignment
Cascade-CNN: https://github.com/anson0910/CNN_face_detection
2. 通用物體檢測
Faster-RCNN:
YOLO: https://github.com/pjreddie/darknet
SSD: https://github.com/FreeApe/VGG-or-MobileNet-SSD
RetinaNet: https://github.com/fizyr/keras-retinanet
分類
VGG: https://github.com/ry/tensorflow-vgg16
GoogLenet: https://github.com/n3011/Inception_v3_GoogLeNet
Resnet: https://github.com/ry/tensorflow-resnet
Mobilenet: https://github.com/shicai/MobileNet-Caffe
Shufflenet: https://github.com/anlongstory/ShuffleNet_V2-caffe
MNasNet: https://github.com/zeusees/Mnasnet-Pretrained-Model
識別
1. 人臉識別
Deepface: https://github.com/RiweiChen/DeepFace
Normface: https://github.com/happynear/NormFace
Insightface: https://github.com/deepinsight/insightface
2. 文字識別
DeepOCR: https://github.com/JinpengLI/deep_ocr
跟蹤
1.
2.
分割
Unet: https://github.com/zhixuhao/unet
mask-rcnn: https://github.com/matterport/Mask_RCNN
邊緣檢測
HED: https://github.com/s9xie/hed
RCF: https://github.com/yun-liu/rcf
影象復原
1. 去雨
DDN: https://github.com/XMU-smartdsp/Removing_Rain
CGAN: https://github.com/hezhangsprinter/ID-CGAN
DID-MDN: https://github.com/hezhangsprinter/DID-MDN
DeRaindrop: https://github.com/rui1996/DeRaindrop
2. 去霧
MSCNN: https://github.com/dishank-b/MSCNN-Dehazing-Tensorflow
DehazeNet: https://github.com/caibolun/DehazeNet
3. 超解析度
SRCNN: https://github.com/tegg89/SRCNN-Tensorflow
EDSR: https://github.com/thstkdgus35/EDSR-PyTorch (https://blog.csdn.net/xjp_xujiping/article/details/81986020)