1. 程式人生 > >sklearn的快速使用之一(資料集探索)

sklearn的快速使用之一(資料集探索)

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn import datasets
from sklearn.decomposition import PCA

# 載入資料集
iris = datasets.load_iris()
#獲取前兩個資料特徵集
X = iris.data[:, :2]
#目標集 
y = iris.target

x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5

plt.figure
(2, figsize=(8, 6)) plt.clf() # 繪製訓練資料集 plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Set1, edgecolor='k') plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) fig = plt.figure(1, figsize=(8, 6)) ax = Axes3D(fig, elev=-150, azim=110) #主成份分析,過濾出3個關鍵要素 X_reduced =
PCA
(n_components=3).fit_transform(iris.data) ax.scatter(X_reduced[:, 0], X_reduced[:, 1], X_reduced[:, 2], c=y, cmap=plt.cm.Set1, edgecolor='k', s=40) ax.set_title("First three PCA directions") ax.set_xlabel("1st eigenvector") ax.w_xaxis.set_ticklabels([]) ax.set_ylabel("2nd eigenvector") ax.w_yaxis.set_ticklabels([]) ax.set_zlabel("3rd eigenvector") ax.w_zaxis.set_ticklabels([])
plt.show
()