1. 程式人生 > >tensorflow視覺化學習18.11.18

tensorflow視覺化學習18.11.18

# -*- coding: utf-8 -*-
"""
Created on Sat Nov 17 21:21:38 2018

@author: asusf
"""
import tensorflow as tf
import numpy as np

def add_layer(inputs,in_size,out_size,n_layer,activation_function=None):
    layer_name='layer%s' % n_layer
    with tf.name_scope(layer_name):
        with tf.name_scope('weights'):
            Weights=tf.Variable(tf.random_normal([in_size,out_size]),name='W')
            tf.summary.histogram(layer_name+'/weights',Weights)
        with tf.name_scope('biases'):
            biases=tf.Variable(tf.zeros([1,out_size])+0.1,name='b')
            tf.summary.histogram(layer_name+'/biases',biases)
        with tf.name_scope('Wx_plus_b'):
            Wx_plus_b=Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases)
        if activation_function is None:
            outputs=Wx_plus_b
        else:
            outputs=activation_function(Wx_plus_b)
        tf.summary.histogram(layer_name+'/outputs',outputs)
    return outputs

#make up some real data
x_data=np.linspace(-1,1,300)[:,np.newaxis]
noise=np.random.normal(0,0.05,x_data.shape)
y_data=np.square(x_data)-0.5+noise


with tf.name_scope('inputs'):
    xs=tf.placeholder(tf.float32,[None,1])
    ys=tf.placeholder(tf.float32,[None,1])

l1=add_layer(xs,1,10,n_layer=1,activation_function=tf.nn.relu)
prediction=add_layer(l1,10,1,n_layer=2,activation_function=None)

with tf.name_scope('loss'):
    loss=tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices=[1]))
    tf.summary.scalar('loss',loss)

with tf.name_scope('train'):
    train_step=tf.train.GradientDescentOptimizer(0.1).minimize(loss)

init=tf.global_variables_initializer()


with tf.Session() as sess:
     merged=tf.summary.merge_all()  #所有的summary打包合併 
     writer=tf.summary.FileWriter("logs",sess.graph)
     sess.run(init)
     for i in range(1000):
         sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
         if i%50==0:
             result=sess.run(merged,feed_dict={xs:x_data,ys:y_data}) #merged也需要run
             writer.add_summary(result,i)