1. 程式人生 > >貸款逾期(3)--XGBoost與Lightgm

貸款逾期(3)--XGBoost與Lightgm

任務三

構建xgboost和lightgbm模型進行預測。

遇到的問題

  • 引數不知道怎麼呼叫
  • xgboost的介面和sklearn介面不明白
  • LGB和XGB自帶介面預測(predict)的都是概率
  • 訓練之前都要將資料轉化為相應模型所需的格式

程式碼

特徵處理




import pickle
import pandas as pd #資料分析
from pandas import Series,DataFrame
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import time
print("開始......")
t_start = time.time()
path = "E:/mypython/moxingxuexi/data/"
"""=====================================================================================================================
1 讀取資料
"""
print("資料預處理")
data = pd.read_csv(path + 'data.csv',encoding='gbk')

"""=====================================================================================================================
2 資料處理
"""
"""將每一個樣本的缺失值的個數作為一個特徵"""
temp1=data.isnull()
num=(temp1 == True).astype(bool).sum(axis=1)
is_null=DataFrame(list(zip(num)))
is_null=is_null.rename(columns={0:"is_null_num"})
data = pd.merge(data,is_null,left_index = True, right_index = True, how = 'outer')

"""
1.1 缺失值用100填充
"""
data=DataFrame(data.fillna(100))


"""
1.2 對reg_preference_for_trad 的處理  【對映】
    nan=0 境外=1 一線=5 二線=2 三線 =3 其他=4
"""
n=set(data['reg_preference_for_trad'])
dic={}
for i,j in enumerate(n):
    dic[j]=i
data['reg_preference_for_trad'] = data['reg_preference_for_trad'].map(dic)


"""
1.2 對source 的處理  【對映】
"""
n=set(data['source'])
dic={}
for i,j in enumerate(n):
    dic[j]=i
data['source'] = data['source'].map(dic)


"""
1.3 對bank_card_no 的處理  【對映】
"""
n=set(data['bank_card_no'])
dic={}
for i,j in enumerate(n):
    dic[j]=i
data['bank_card_no'] = data['bank_card_no'].map(dic)

"""
1.2 對 id_name的處理  【對映】
"""
n=set(data['id_name'])
dic={}
for i,j in enumerate(n):
    dic[j]=i
data['id_name'] = data['id_name'].map(dic)

"""
1.2 對 time 的處理  【刪除】
"""
data.drop(["latest_query_time"],axis=1,inplace=True)
data.drop(["loans_latest_time"],axis=1,inplace=True)
data.drop(['trade_no'],axis=1,inplace=True)
status = data.status
# """=====================================================================================================================
# 4 time時間歸一化 小時
# """
# data['time'] = pd.to_datetime(data['time'])
# time_now = data['time'].apply(lambda x:int((x-datetime(2018,11,14,0,0,0)).seconds/3600))
# data['time']= time_now

"""=====================================================================================================================
2 劃分訓練集和驗證集,驗證集比例為test_size
"""
print("劃分訓練集和驗證集,驗證集比例為test_size")
train, test = train_test_split(data, test_size=0.3, random_state=666)

"""
標準化資料
"""
standardScaler = StandardScaler()
train_fit = standardScaler.fit_transform(train)
test_fit = standardScaler.transform(test)
"""=====================================================================================================================
3 分標籤和 訓練資料
"""
y_train= train.status
train.drop(["status"],axis=1,inplace=True)

y_test= test.status
test.drop(["status"],axis=1,inplace=True)


print("3 儲存至本地")
data = (train, test, y_train,y_test)
fp = open( 'E:/mypython/moxingxuexi/feature/V3.pkl', 'wb')
pickle.dump(data, fp)
fp.close()

XGB 

#!/user/bin/env python
#-*- coding:utf-8 -*-

import  pickle
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from pandas import Series,DataFrame
from xgboost import XGBClassifier
from sklearn.metrics import accuracy_score,f1_score,r2_score

"""
讀取特徵資料
"""
path= "E:/mypython/moxingxuexi/"
f = open(path + 'feature/V3.pkl','rb')
train,test,y_train,y_test= pickle.load(f)
f.close()

"""
模型訓練
"""
print("xgb訓練模型")
xgb_model = XGBClassifier()
xgb_model.fit(train,y_train)

"""
模型預測
"""
y_test_pre =xgb_model.predict(test)

"""
模型評估
"""
f1 = f1_score(y_test,y_test_pre,average='macro')
print("f1的分數: {}".format(f1))
r2 = r2_score(y_test,y_test_pre)
print("f2分數:{}".format(r2))
score = xgb_model.score(test,y_test)
print("驗證集分數:{}".format(score))

 結果

XGB1

用的自帶介面與sklearn介面

#!/user/bin/env python
#-*- coding:utf-8 -*-
# @Time    : 2018/11/18 15:07
# @Author  : 劉
# @Site    : 
# @File    : xgb1.py
# @Software: PyCharm
import pickle
import xgboost as xgb
import pandas as pd
from sklearn.model_selection import train_test_split
from xgboost.sklearn import XGBClassifier
from sklearn import metrics
from sklearn.externals import joblib

print("開始")
"""
讀取特徵
"""
path = "E:/mypython/moxingxuexi/"
f = open(path+ 'feature/V3.pkl','rb')
train ,test,y_train,y_test=pickle.load(f)
f.close()
"""
將資料格式轉換成XGB所需的格式
"""
xgb_val = xgb.DMatrix(test,label= y_test)
xgb_train = xgb.DMatrix(train,y_train)
xgb_test = xgb.DMatrix(test)
"""
模型引數設定
"""
##XGB自帶介面
params={
'booster': 'gbtree',#常用的booster有樹模型(tree)和線性模型(linear model)
'objective': 'reg:linear',

'gamma': 0.1,#用於控制是否後剪枝的引數,越大越保守一般是0.1,0.2
'max_depth': 10,#構建樹的深度,越大越容易過擬合
'lambda': 2,#控制權重值的L2正則化項引數,引數越大,模型越不容易過擬合
'subsample': 0.7,#隨機訓練樣本
'colsample_bytree': 0.7,#生成樹時進行的列取樣
'min_child_weight': 3,
# 這個引數預設是 1,是每個葉子裡面 h 的和至少是多少,對正負樣本不均衡時的 0-1 分類而言
#,假設 h 在 0.01 附近,min_child_weight 為 1 意味著葉子節點中最少需要包含 100 個樣本。
#這個引數非常影響結果,控制葉子節點中二階導的和的最小值,該引數值越小,越容易 overfitting。

'silent': 0,#設定成1則沒有執行資訊輸出,最好是設定為0
'eta': 0.001,# 如同學習率
'seed': 1000,#隨機種子
# 'nthread':7,# cpu 執行緒數
#'eval_metric': # 'auc'
}
plst = list(params.items())## 轉化為list
num_rounds = 50 # 設定迭代次數


#sklearn介面
##分類使用XGBClassifier
##迴歸使用XGBRegression
clf = XGBClassifier(
    n_estimators =30,
    learning_rate =0.3,
    max_depth=3,
    min_child_weight=1,
    gamma=0.3,
    subsample=0.8,
    colsample_bytree=0.8,
    objective= 'binary:logistic',
    nthread=12,
    scale_pos_weight=1,
    reg_lambda=1,
    seed=27)
watchlist = [(xgb_train, 'train'),(xgb_val, 'val')]
"""
模型訓練
"""
# training model
#early_stopping_rounds 當設定的迭代次數較大時,early_stopping_rounds 可在一定的迭代次數內準確率沒有提升就停止訓練
# 使用XGBoost有自帶介面
"""使用XGBOOST自帶訓練介面"""
model_xgb= xgb.train(plst,xgb_train,num_rounds,watchlist,early_stopping_rounds=100)

"""使用sklenar介面訓練"""
model_xgb_sklearn =clf.fit(train,y_train)

"""
模型儲存
"""
print('模型儲存')
joblib.dump(model_xgb,path+"model/xgb.pkl")
joblib.dump(model_xgb_sklearn,path+"model/xgb_sklearn.pkl")

"""
模型預測
"""
"""【使用XGB自帶介面預測】"""
y_xgb=model_xgb.predict(xgb_test)
"""【使用xgb sklearn預測】"""
y_sklearn_pre= model_xgb_sklearn.predict(test)
y_sklearn_proba= model_xgb_sklearn.predict_proba(test)[:,1]

"""5 模型評分"""


print("XGBoost_自帶介面(predict) : %s" % y_xgb)
print("XGBoost_sklearn介面(proba): %s" % y_sklearn_proba)
print("XGBoost_sklearn介面(predict)  : %s" % y_sklearn_pre)

# print("XGBoost_自帶介面(predict)     AUC Score : %f" % metrics.roc_auc_score(y_test, y_xgb))
# print("XGBoost_sklearn介面(proba)  AUC Score : %f" % metrics.roc_auc_score(y_test, y_sklearn_proba))
# print("XGBoost_sklearn介面(predict) AUC Score : %f" % metrics.roc_auc_score(y_test, y_sklearn_pre))
"""【roc_auc_score】"""
#直接根據真實值(必須是二值)、預測值(可以是0/1,也可以是proba值)計算出auc值,中間過程的roc計算省略。
# f1 = f1_score(y_test, predictions, average='macro')
print("XGBoost_自帶介面(predict)           AUC Score :{}".format(metrics.roc_auc_score(y_test, y_xgb)))
print("XGBoost_sklearn介面(proba)         AUC Score : {}".format(metrics.roc_auc_score(y_test, y_sklearn_proba)))
print("XGBoost_sklearn介面(predict)       AUC Score :{}".format(metrics.roc_auc_score(y_test, y_sklearn_pre)))


評分

LGB

#!/user/bin/env python
#-*- coding:utf-8 -*-
# @Time    : 2018/11/17 23:03
# @Author  : 劉
# @Site    : 
# @File    : lig.py
# @Software: PyCharm
import pickle
import pandas as pd
from pandas import Series,DataFrame
from sklearn.model_selection import train_test_split
from lightgbm import LGBMClassifier
from sklearn.metrics import f1_score,r2_score

"""
讀取特徵
"""
path= "E:/mypython/moxingxuexi/"
f =open(path + 'feature/V3.pkl','rb')
train,test,y_train,y_test= pickle.load(f)
f.close()
"""
模型訓練
"""
print("lgb模型訓練")
lgb_model = LGBMClassifier()
lgb_model.fit(train,y_train)

"""
模型預測
"""
y_test_pre = lgb_model.predict(test)

"""
模型評估
"""
f1 = f1_score(y_test,y_test_pre,average='macro')
print("f1的分數: {}".format(f1))
r2 = r2_score(y_test,y_test_pre)
print("f2分數:{}".format(r2))
score = lgb_model.score(test,y_test)
print("驗證集分數:{}".format(score))

評分

LGB1

#!/user/bin/env python
#-*- coding:utf-8 -*-
# @Time    : 2018/11/17 23:03
# @Author  : 劉
# @Site    : 
# @File    : lig.py
# @Software: PyCharm
import pickle
import pandas as pd
from pandas import Series,DataFrame
from sklearn.model_selection import train_test_split
from lightgbm import LGBMClassifier
from sklearn.metrics import f1_score,r2_score

"""
讀取特徵
"""
path= "E:/mypython/moxingxuexi/"
f =open(path + 'feature/V3.pkl','rb')
train,test,y_train,y_test= pickle.load(f)
f.close()
"""
模型訓練
"""
print("lgb模型訓練")
lgb_model = LGBMClassifier()
lgb_model.fit(train,y_train)

"""
模型預測
"""
y_test_pre = lgb_model.predict(test)

"""
模型評估
"""
f1 = f1_score(y_test,y_test_pre,average='macro')
print("f1的分數: {}".format(f1))
r2 = r2_score(y_test,y_test_pre)
print("f2分數:{}".format(r2))
score = lgb_model.score(test,y_test)
print("驗證集分數:{}".format(score))

 評分

參考