「Luogu4173」&&「BZOJ4529」殘缺的字串-FFT
阿新 • • 發佈:2018-12-22
Description
給定兩個具有萬用字元的串 , 。其中 是模板串,求匹配數。
Solution
考慮沒有萬用字元怎麼匹配,即從起始位置開始每個字元都相同,即 。
而萬用字元可以與任何字元相同,相當於乘上了 ,即 。 表示 是否是萬用字元。
反轉 串,把式子拆開就是卷積的形式,FFT即可。
#include <bits/stdc++.h>
using namespace std;
const int maxn = 300005 * 5;
int m, n;
char s[maxn], t[maxn];
int a[maxn], b[maxn], c[maxn], ans[maxn], Ans;
inline int gi()
{
char c = getchar();
while (c < '0' || c > '9') c = getchar();
int sum = 0;
while ('0' <= c && c <= '9') sum = sum * 10 + c - 48, c = getchar();
return sum;
}
namespace FFT
{
const double pi = acos(-1);
typedef complex<double> cpx;
int n, len, L, R[maxn];
cpx A[maxn], B[maxn];
void FFT(cpx *a, int f)
{
for (int i = 0; i < n; ++i) if (i < R[i]) swap(a[i], a[R[i]]);
for (int i = 1; i < n; i <<= 1) {
cpx wn(cos(pi / i), sin(f * pi / i)), t;
for (int j = 0; j < n; j += (i << 1)) {
cpx w(1, 0);
for (int k = 0; k < i; ++k, w *= wn) {
t = a[j + i + k] * w;
a[j + i + k] = a[j + k] - t;
a[j + k] = a[j + k] + t;
}
}
}
}
void mul(int *a, int *b, int len1, int len2, int *c)
{
L = 0;
for (n = 1, len = len1 + len2 - 1; n < len; n <<= 1) ++L;
--L;
for (int i = 0; i < n; ++i) R[i] = (R[i >> 1] >> 1) | ((i & 1) << L);
fill(A, A + n, 0); fill(B, B + n, 0);
for (int i = 0; i < len1; ++i) A[i] = a[i];
for (int i = 0; i < len2; ++i) B[i] = b[i];
FFT(A, 1); FFT(B, 1);
for (int i = 0; i < n; ++i) A[i] *= B[i];
FFT(A, -1);
for (int i = 0; i < len2; ++i) c[i] = (int)(A[i].real() / n + 0.5);
}
}
int main()
{
m = gi(); n = gi();
scanf("%s\n", s); reverse(s, s + m);
scanf("%s\n", t);
for (int i = 0; i < m; ++i) a[i] = (s[i] != '*') * (s[i] - 'a') * (s[i] - 'a');
for (int i = 0; i < n; ++i) b[i] = (t[i] != '*');
FFT::mul(a, b, m, n, c);
for (int i = 0; i < n; ++i) ans[i] += c[i];
for (int i = 0; i < m; ++i) a[i] = (s[i] != '*');
for (int i = 0; i < n; ++i) b[i] = (t[i] != '*') * (t[i] - 'a') * (t[i] - 'a');
FFT::mul(a, b, m, n, c);
for (int i = 0; i < n; ++i) ans[i] += c[i];
for (int i = 0; i < m; ++i) a[i] = (s[i] != '*') * (s[i] - 'a');
for (int i = 0; i < n; ++i) b[i] = (t[i] != '*') * (t[i] - 'a');
FFT::mul(a, b, m, n, c);
for (int i = 0; i < n; ++i) ans[i] -= c[i] * 2;
for (int i = m - 1; i < n; ++i) if (!ans[i]) ++Ans;
printf("%d\n", Ans);
for (int i = m - 1; i < n; ++i) if (!ans[i]) printf("%d ", i - m + 2);
return 0;
}