PAT程式設計練習——甲級1002(兩個多項式的解析與合併)
阿新 • • 發佈:2018-12-23
翻譯題目要求:
程式輸入為兩行:均為一個多項式,按 K N1 An1 N2 An2......Nk Ank,K代表的是多項式的非零項數,範圍閉區間是[1,10],N1到Nk的範圍區間是 1<= Nk <= ......<= N1 <= 1000;
Nk是指數,Ank是係數,遇到相同的指數,係數進行累加,從而合併成一個多項式。
例子輸入:
2 1 2.4 0 3.2
2 2 1.5
1 0.5
可以解析成:
第一行: 2個子項---1*2.4 + 0*3.2
第二行: 2個子項---2*1.5 + 1*0.5
其中指數部分,二者有重合,可以累加,結果有 1*(2.4 + 0.5)
輸出:
3 2 1.5
1 2.9 0 3.2
可以理解成: 3個子項---2*1.5 + 1*2.9 + 0*3.2
設計思路如下:
在控制檯情況下輸入兩行,按照格式解析出多項式後,用結構體儲存每一項係數和指數:
typedef struct
{
int exponents; //係數
float coeffients; //指數
}Polynomials;
再使用歸併排序的類似實現把兩個多項式合併在一起,完整程式碼如下:
#include <stdio.h> #include <string.h> typedef struct { int exponents; float coeffients; }Polynomials; int size1 = 0; int size2 = 0; int size3 = 0; Polynomials poly1[10] = {0}; Polynomials poly2[10] = {0}; Polynomials poly3[20] = {0}; // 把scanf輸入儲存到多項式結構體中 int save( char* input, Polynomials* poly, int& size ) { int expo = 0; float coeff = 0; char* p = NULL; char* q = NULL; char szbuffer[100] = {0}; sscanf(input, "%d %s", &size, szbuffer ); p = input; for ( int i = 0; i < size; i++ ) { memset(szbuffer, 0, sizeof(szbuffer) ); while( *p != ' ') p++; q = p + 1 ; while( *q != ' ') q++; q++; while( *q != ' ') { q++; if ( (q - input) == strlen(input) )//the end case break; } q--; strncpy( szbuffer, p, q-p+1 ); sscanf( szbuffer, "%d %f",&expo, &coeff ); poly[i].coeffients = coeff; poly[i].exponents = expo; p = q+1; } return 0; } // 仿照歸併排序的思路合併多項式 int sort() { int poly_index1 = 0, poly_index2 = 0; int result_size = size1 + size2; for ( int i = 0; i < result_size; i++ ) { int expo1 = -1; int expo2 = -1; if ( poly_index1 != size1 ) { expo1 = poly1[poly_index1].exponents; } if ( poly_index2 != size2 ) { expo2 = poly2[poly_index2].exponents; } if ( expo1 > expo2 ) { poly3[i].exponents = expo1; poly3[i].coeffients = poly1[poly_index1].coeffients; poly_index1++; } else if ( expo1 < expo2 ) { poly3[i].exponents = expo2; poly3[i].coeffients = poly2[poly_index2].coeffients; poly_index2++; } else { poly3[i].exponents = expo1; poly3[i].coeffients = poly1[poly_index1].coeffients + poly2[poly_index2].coeffients; poly_index1++; poly_index2++; result_size--; //出現重複可以累加的合併項,總長度減一 } } size3 = result_size; return 0; }
Python程式碼如下:// 列印多項式結果 int print() { char szResult[200] = {0}; sprintf_s(szResult,"%d",size3); for ( int i = 0; i < size3; i++ ) { char buffer[20] = {0}; sprintf_s(buffer, " %d %.1f", poly3[i].exponents, poly3[i].coeffients ); strcat(szResult, buffer); } printf( "%s\n", szResult ); return 0; } /************************************************************************/ //Input //2 1 2.4 0 3.2 //2 2 1.5 1 0.5 //Output //3 2 1.5 1 2.9 0 3.2 /************************************************************************/ int main() { char szInput[100] = {0}; printf("Please input first Polynomials:\n"); scanf("%[^\n]",szInput); save(szInput,poly1,size1); memset(szInput, 0, sizeof(szInput)); printf("Please input second Polynomials:\n"); getchar(); scanf("%[^\n]",szInput); save(szInput,poly2,size2); sort(); print(); return 0; }
#the struct definition
class Polynomials:
def __init__(self,exponents,coeffients):
self.exponents = int(exponents)
self.coeffients = float(coeffients)
#the list array
poly1=[]
poly2=[]
poly_result=[]
poly_size1 = []
poly_size2 = []
poly_size3 = []
#main function
def __main():
str_input = raw_input("Please input the first polynomials:\n")
print("the input is:",str_input)
parse( str_input, poly1, poly_size1 )
str_input = raw_input("Please input the second polynomials:\n")
print("the input is:",str_input)
parse( str_input, poly2, poly_size2 )
calc()
output()
#parse the polynomials from the parameters
def parse( str_input, poly_list, poly_size ):
poly_size.append(str_input.split(' ',1)[0])
str_input = str_input.split(' ',1)[1]
str_input = str_input.split(' ')
#print( str_input[0], len(str_input), str_input[1] )
for i in range(0,len(str_input),2):
tmp = Polynomials( str_input[i],str_input[i+1] )
poly_list.append(tmp)
#calculate the combination of 2 polynomials
def calc():
poly_index1 = 0
poly_index2 = 0
result_size = int(poly_size1[0]) + int(poly_size2[0])
print( "calc, result_size:", poly_size1[0], poly_size2[0], result_size )
print( "poly1,poly2", poly1[0].exponents,poly2[0].exponents )
print( "poly1, poly2", poly1[1].exponents, poly2[1].exponents )
for i in range(0,result_size):
expo1 = -1; expo2 = -1
if( poly_index1 != int(poly_size1[0]) ):
expo1 = poly1[poly_index1].exponents
if( poly_index2 != int(poly_size2[0]) ):
expo2 = poly2[poly_index2].exponents
if( expo1 is -1 and expo2 is -1 ):
break;
if( expo1 > expo2 ):
tmp = Polynomials( expo1, poly1[poly_index1].coeffients )
poly_result.append(tmp)
poly_index1 += 1
print( ">>1<<")
elif( expo1 < expo2 ):
tmp = Polynomials( expo2, poly2[poly_index2].coeffients )
poly_result.append(tmp)
poly_index2 += 1
print( ">> 2<<")
else:
tmp = Polynomials( expo1, poly1[poly_index1].coeffients + poly2[poly_index2].coeffients )
poly_result.append(tmp)
poly_index1 += 1
poly_index2 += 1
result_size -= 1
print(">> 3 <<")
poly_size3.append(result_size)
print("poly_size3:",poly_size3[0])
print("result_size:",result_size )
def output():
print( "result:", poly_size3[0] )
print( "content:", poly_result[0].exponents, poly_result[0].coeffients, poly_result[1].exponents, poly_result[1].coeffients, poly_result[2].exponents, poly_result[2].coeffients )
for i in range(0,poly_size3[0] ):
print("exponents:coeffients",poly_result[i].exponents,poly_result[i].coeffients )
#run the main function
__main()
可能還有其他更優化的辦法,正在考慮當中。。。