1. 程式人生 > >Python與C混合程式設計!是Python和C都不具備的超能力!

Python與C混合程式設計!是Python和C都不具備的超能力!

Python與C混合程式設計!是Python和C都不具備的超能力!

 

Python與C混合程式設計!是Python和C都不具備的超能力!

 

編寫 c => python 的介面檔案

// vectory_py.c
extern "C" {
 vector<point_t>* new_vector(){
 return new vector<point_t>;
 }
 void delete_vector(vector<point_t>* v){
 cout << "destructor called in C++ for " << v << endl;
 delete v;
 }
 int vector_size(vector<point_t>* v){
 return v->size();
 }
 point_t vector_get(vector<point_t>* v, int i){
 return v->at(i);
 }
 void vector_push_back(vector<point_t>* v, point_t i){
 v->push_back(i);
 }
}

編譯: gcc -fPIC -shared -lpython3.6m -o vector_py.so vectory_py.c

Python與C混合程式設計!是Python和C都不具備的超能力!

 

編寫 ctypes 型別檔案

from ctypes import *
class c_point_t(Structure):
 _fields_ = [("x", c_int), ("y", c_int)]
class Vector(object):
 lib = cdll.LoadLibrary('./vector_py_lib.so') # class level loading lib
 lib.new_vector.restype = c_void_p
 lib.new_vector.argtypes = []
 lib.delete_vector.restype = None
 lib.delete_vector.argtypes = [c_void_p]
 lib.vector_size.restype = c_int
 lib.vector_size.argtypes = [c_void_p]
 lib.vector_get.restype = c_point_t
 lib.vector_get.argtypes = [c_void_p, c_int]
 lib.vector_push_back.restype = None
 lib.vector_push_back.argtypes = [c_void_p, c_point_t]
 lib.foo.restype = None
 lib.foo.argtypes = []
 def __init__(self):
 self.vector = Vector.lib.new_vector() # pointer to new vector
 def __del__(self): # when reference count hits 0 in Python,
 Vector.lib.delete_vector(self.vector) # call C++ vector destructor
 def __len__(self):
 return Vector.lib.vector_size(self.vector)
 def __getitem__(self, i): # access elements in vector at index
 if 0 <= i < len(self):
 return Vector.lib.vector_get(self.vector, c_int(i))
 raise IndexError('Vector index out of range')
 def __repr__(self):
 return '[{}]'.format(', '.join(str(self[i]) for i in range(len(self))))
 def push(self, i): # push calls vector's push_back
 Vector.lib.vector_push_back(self.vector, i)
 def foo(self): # foo in Python calls foo in C++
 Vector.lib.foo(self.vector)

然後才是呼叫

from vector import *
a = Vector()
b = c_point_t(10, 20)
a.push(b)
a.foo()
for i in range(len(a)) :
 print(a[i].x)
 print(a[i].y)

為Python寫擴充套件

完成上述的操作後,我頭很大,很難想象當專案稍微修改後,我們要跟隨變化的程式碼量有多大!於是換了一種思路,為Python寫擴充套件。

進群:960410445   有驚喜大禮包!

安裝Python開發包

yum install -y python36-devel

修改資料互動檔案

#include <python3.6m/Python.h>
PyObject* foo()
{
 PyObject* result = PyList_New(0);
 int i = 0, j = 0;
 for (j = 0; j < 2; j++) {
 PyObject* sub = PyList_New(0);
 for (i = 0; i < 100; ++i)
 {
 PyList_Append(sub, Py_BuildValue("{s:i, s:i}", "x", i, "y", 100 - i));
 }
 PyList_Append(result, sub);
 }
 return result;
}

呼叫

from ctypes import *
lib = cdll.LoadLibrary('./extlist.so') # class level loading lib
lib.foo.restype = py_object
b = lib.foo()
for i in range(len(b)) :
 for j in range(len(b[i])) :
 d = b[i][j]
 print(d['x'])

很顯然,第二種方式中,我已經封裝了很複雜的結構了,如果用 c++ 來表示的話,將是:

vector<vector >

遇到的問題

Python C 混編時 Segment

這個問題困擾了我有一段時間,開始一直在糾結是程式碼哪錯了,後來恍然大悟,Python 和 C 的堆疊是完全不同的,而當我在互動大量資料的時候,Python GC 可能會把 C 的記憶體當作未使用,直接給釋放了(尤其是上述第二種方案),這就是問題所在。(Python GC 中使用的代齡後續專門開文章來說明,歡迎關注公眾號 cn_isnap)

這裡的解決方案其實有很多,記憶體能撐過Python前兩代的檢查就可了,或者是純C管理。在這裡我推薦一種粗暴的解決方案:

對於任何呼叫Python物件或Python C API的C程式碼,確保你首先已經正確地獲取和釋放了GIL。 這可以用 PyGILState_Ensure() 和 PyGILState_Release() 來做到,如下所示:

...
/* Make sure we own the GIL */
PyGILState_STATE state = PyGILState_Ensure();
/* Use functions in the interpreter */
...
/* Restore previous GIL state and return */
PyGILState_Release(state);