codeforces簡單思維題合集
阿新 • • 發佈:2018-12-24
題意是問一個數列能否劃分為幾段使得每段的和相等(段數至少為2)
必然有一段是從1開始的
所以答案必然是n-1個字首和中的一個
O(n)列舉,O(n)檢驗
#include <bits/stdc++.h> using namespace std; #define LL long long #define db double const int MAXN = 200; const int LIM = 101; const int INF = 0x3f3f3f3f; template <typename T> inline void read(T &x) { int ch = getchar(); bool fg = false; for (x = 0; !isdigit(ch); ch = getchar()) { if (ch == '-') { fg = true; } } for (; isdigit(ch); ch = getchar()) { x = x * 10 + ch - '0'; } if (fg) { x = -x; } } int n, a[MAXN], sum[MAXN]; char s[MAXN]; bool check(int x, int k) { int cur = k, tot = 1; for(int i = k + 1; i <= n; i++) { if(sum[i] - sum[cur] == x) { cur = i, tot++; while(sum[i] == sum[i + 1]) i++, cur++; } else while(sum[i + 1] == sum[i]) i++; } if(sum[n] - sum[cur] != x && cur != n) return 0; if(tot > 1) return 1; return 0; } signed main() { read(n); scanf("%s", s + 1); if(n == 1) { puts("NO"); return 0; } for(int i = 1; i <= n; i++) a[i] = (int) (s[i] - '0'); for(int i = 1; i <= n; i++) sum[i] = sum[i - 1] + a[i]; for(int i = 1; i <= n; i++) { if(check(sum[i], i)) { puts("YES"); return 0; } } puts("NO"); return 0; }
第一眼以為不可做
然鵝a,b的取值只有0,1,2,3,完全可以列舉t1然後遞推檢驗
#include <bits/stdc++.h> #define LL long long #define db double using namespace std; const int MAXN = 200010; const int INF = 0x3f3f3f3f; template <typename T> inline void read(T &x) { char c = getchar(); bool f = false; for (x = 0; !isdigit(c); c = getchar()) { if (c == '-') { f = true; } } for (; isdigit(c); c = getchar()) { x = x * 10 + c - '0'; } if (f) { x = -x; } } template <typename T> inline bool CheckMax(T &a, const T &b) { return a < b ? a = b, true : false; } template <typename T> inline bool CheckMin(T &a, const T &b) { return a > b ? a = b, true : false; } int n; int a[MAXN], b[MAXN], t[MAXN]; int cnt; #define ls lower_bound #define us upper_bound typedef pair<int, int> pii; typedef pair<pii, pii> ppp; map<pii, vector<pii> > f; bool check(int T, int x) { if(x == n) { t[n] = T; return 1; } t[x] = T; for(int j = 0; j <= 3; j++) { if((t[x] | j) == a[x] && (t[x] & j) == b[x]) { return check(j, x + 1); } } return 0; } signed main() { read(n); for(int i = 1; i < n; i++) read(a[i]); for(int i = 1; i < n; i++) read(b[i]); for(int i = 1; i < n; i++) { if(a[i] < b[i]) { puts("NO"); return 0; } } for(int i = 0; i <= 3; i++) { if(check(i, 1)) { puts("YES"); for(int i = 1; i <= n; i++) printf("%d%c", t[i], i == n ? '\n' : ' '); return 0; } } puts("NO"); return 0; }
給你兩個數列,問能不能分別劃分使得對應段的和相等
搞兩個指標,戳戳戳就ojbk了
#include <bits/stdc++.h> using namespace std; #define LL long long #define db double const int MAXN = 300300; const int MAXE = 400400; const int INF = 0x3f3f3f3f; template <typename T> inline void read(T &x) { int ch = getchar(); bool fg = false; for (x = 0; !isdigit(ch); ch = getchar()) { if (ch == '-') { fg = true; } } for (; isdigit(ch); ch = getchar()) { x = x * 10 + ch - '0'; } if (fg) { x = -x; } } LL a[MAXN], b[MAXN]; int n, m; signed main() { read(n); for(int i = 1; i <= n; i++) read(a[i]), a[i] += a[i - 1]; read(m); for(int i = 1; i <= m; i++) read(b[i]), b[i] += b[i - 1]; if(a[n] != b[m]) puts("-1"); else { int i = 1, j = 1, ans = 0; while(i <= n && j <= m) { while(a[i] < b[j] && i <= n) i++; while(a[i] > b[j] && j <= m) j++; if(a[i] == b[j] && i <= n && j <= m) { i++, ans++; } } printf("%d\n", ans); } return 0; }
蜜汁找規律。。。
#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define db double
const int MAXN = 200200;
const int LIM = 1000000;
const int INF = 0x3f3f3f3f;
template <typename T> inline void read(T &x) {
int ch = getchar();
bool fg = false;
for (x = 0; !isdigit(ch); ch = getchar()) {
if (ch == '-') {
fg = true;
}
}
for (; isdigit(ch); ch = getchar()) {
x = x * 10 + ch - '0';
}
if (fg) {
x = -x;
}
}
signed main() {
LL n, m, k, Q;
read(Q);
while(Q --) {
read(n), read(m), read(k);
if(max(n, m) > k) puts("-1");
else {
if((n + m) & 1) printf("%I64d\n", k - 1);
else if((k + m) & 1) printf("%I64d\n", k - 2);
else printf("%I64d\n", k);
}
}
return 0;
}
兩個sigma並沒有聯絡,所以可以單獨考慮a和b,不必算出c
然後維護一下最大值就好了
#include <bits/stdc++.h>
#define LL long long
#define db double
using namespace std;
const int MAXN = 2002;
const int MAXE = 400400;
const int INF = 0x3f3f3f3f;
template<typename T> inline void CheckMax(T &A, T B) {
A < B ? A = B : A;
}
template<typename T> inline void CheckMin(T &A, T B) {
A > B ? A = B : A;
}
template <typename T> inline void read(T &x) {
int c = getchar();
bool f = false;
for (x = 0; !isdigit(c); c = getchar()) {
if (c == '-') {
f = true;
}
}
for (; isdigit(c); c = getchar()) {
x = x * 10 + c - '0';
}
if (f) {
x = -x;
}
}
int n, m;
LL a[MAXN], b[MAXN], X;
LL asum[MAXN], bsum[MAXN];
signed main() {
read(n), read(m);
for(int i = 1; i <= n; i++) read(a[i]);
for(int i = 1; i <= m; i++) read(b[i]);
read(X);
for(int i = 1; i <= n; i++) a[i] += a[i - 1];
for(int j = 1; j <= m; j++) b[j] += b[j - 1];
memset(asum, 0x7f, sizeof(asum));
memset(bsum, 0x7f, sizeof(bsum));
for(int len = 1; len <= n || len <= m; len++) {
if(len <= n) {
for(int i = 1; i <= n - len + 1; i++) {
CheckMin(asum[len], a[i + len - 1] - a[i - 1]);
}
}
if(len <= m) {
for(int i = 1; i <= m - len + 1; i++) {
CheckMin(bsum[len], b[i + len - 1] - b[i - 1]);
}
}
}
int ans = 0;
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= m; j++) {
if(asum[i] * bsum[j] <= X)
CheckMax(ans, i * j);
}
}
printf("%d\n", ans);
return 0;
}