1. 程式人生 > >Yolov3訓練自己標記的資料

Yolov3訓練自己標記的資料

一、首先下載配置Yolov3框架

git clone https://github.com/pjreddie/darknet
cd darknet
make

下載常用的模型檔案

wget https://pjreddie.com/media/files/yolov3.weights
wget https://pjreddie.com/media/files/yolov3-tiny.weights
wget https://pjreddie.com/media/files/darknet53.conv.74

如果需要使用cuda進行訓練,配置開通cuda

vim Makefile
將預設不開啟數字0改為1,然後儲存關閉,重新執行一下make
GPU=1
CUDNN=1

 二、資料轉換

LabelImage標記的資料生成的為xml格式,利用Python轉換成txt格式,進行中心歸一化。貼出voc轉換程式碼。

import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join

sets=[('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test')]

classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]


def convert(size, box):
    dw = 1./size[0]
    dh = 1./size[1]
    x = (box[0] + box[1])/2.0
    y = (box[2] + box[3])/2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x*dw
    w = w*dw
    y = y*dh
    h = h*dh
    return (x,y,w,h)

def convert_annotation(year, image_id):
    in_file = open('VOCdevkit/VOC%s/Annotations/%s.xml'%(year, image_id))
    out_file = open('VOCdevkit/VOC%s/labels/%s.txt'%(year, image_id), 'w')
    tree=ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)

    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
        bb = convert((w,h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')

wd = getcwd()

for year, image_set in sets:
    if not os.path.exists('VOCdevkit/VOC%s/labels/'%(year)):
        os.makedirs('VOCdevkit/VOC%s/labels/'%(year))
    image_ids = open('VOCdevkit/VOC%s/ImageSets/Main/%s.txt'%(year, image_set)).read().strip().split()
    list_file = open('%s_%s.txt'%(year, image_set), 'w')
    for image_id in image_ids:
        list_file.write('%s/VOCdevkit/VOC%s/JPEGImages/%s.jpg\n'%(wd, year, image_id))
        convert_annotation(year, image_id)
    list_file.close()

三、將所有的圖片生成在一個txt文件中儲存

用Python將所有的圖片資料的路徑儲存在一個txt文件中,便於後期訓練。

四、配置yourlabel.names、yourtrain.data、youryolov3.cfg

在yourlabel.names裡面存放標記的類別名稱,在yourtrain.data裡面如下

classes= 4 #需要標記的類別,與label數相對應
train = /media/pico/886835D26835C02C/Kevin_ubuntu/darknet/data/myv3.txt #合成的圖片訓練資料集
names = /media/pico/886835D26835C02C/Kevin_ubuntu/darknet/data/myv3.names #label檔案
backup= /media/pico/886835D26835C02C/Kevin_ubuntu/darknet/backup #存放模型路徑

在youryolov3.cfg中配置你的網路,可以使用voc模型但是需要修改每一個yolo層的前一層的filters,filters數值=3×(類別數+5),比如你分類標記的類別為4類,則filters=3×(4+5)=27。

yourlabel.names與生成圖片路徑文件放在data資料夾下,yourtrain.data與youryolov3.cfg放在cfg資料夾下。

五、訓練自己的模型

在darknet路徑下啟動命令視窗,然後執行如下命令,模型會在backup下進行儲存。

./darknet detector train cfg/voc.data cfg/yolov3-voc.cfg darknet53.conv.74

六、測試模型

./darknet detect cfg/my_yolov3.cfg backup/my_yolov3_900.weights data/jam7_0002.jpg

七、yolov3引數配置

[net]
# Testing            ### 測試模式                                          
# batch=1
# subdivisions=1
# Training           ### 訓練模式,每次前向的圖片數目 = batch/subdivisions 
batch=64
subdivisions=16      ### 如果cuda out of memory,需要調小batch_size
width=416            ### 網路的輸入寬、高、通道數
height=416
channels=3           ### RGB圖使用3通道,灰度圖使用1
momentum=0.9         ### 動量 
decay=0.0005         ### 權重衰減
angle=0
saturation = 1.5     ### 飽和度
exposure = 1.5       ### 曝光度 
hue=.1               ### 色調
learning_rate=0.001  ### 學習率 
burn_in=1000         ### 學習率控制的引數
max_batches = 50200  ### 迭代次數                                          
policy=steps         ### 學習率策略 
steps=40000,45000    ### 學習率變動步長 
scales=.1,.1         ### 學習率變動因子  



[convolutional]
batch_normalize=1    ### BN
filters=32           ### 卷積核數目
size=3               ### 卷積核尺寸
stride=1             ### 卷積核步長
pad=1                ### pad
activation=leaky     ### 啟用函式

......

[convolutional]
size=1
stride=1
pad=1
filters=45  #3*(10+4+1)
activation=linear

[yolo]
mask = 6,7,8
anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
classes=10  #類別
num=9
jitter=.3
ignore_thresh = .5
truth_thresh = 1
random=0  #1,如果視訊記憶體很小,將random設定為0,關閉多尺度訓練;
......

[convolutional]
size=1
stride=1
pad=1
filters=45  #3*(10+4+1)
activation=linear

[yolo]
mask = 3,4,5
anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
classes=10  #類別
num=9
jitter=.3
ignore_thresh = .5
truth_thresh = 1
random=0  #1,如果視訊記憶體很小,將random設定為0,關閉多尺度訓練;
......

[convolutional]
size=1
stride=1
pad=1
filters=45  #3*(10+4+1)
activation=linear

[yolo]
mask = 0,1,2
anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
classes=10  #類別
num=9
jitter=.3  # 資料擴充的抖動操作
ignore_thresh = .5  #文章中的閾值1
truth_thresh = 1  #文章中的閾值2
random=0  #1,如果視訊記憶體很小,將random設定為0,關閉多尺度訓練;