1. 程式人生 > >Canal( 增量資料訂閱與消費 )的理解及應用

Canal( 增量資料訂閱與消費 )的理解及應用

canal是阿里巴巴旗下的一款開源專案,純Java開發。基於資料庫增量日誌解析,提供增量資料訂閱&消費,目前主要支援了MySQL(也支援mariaDB)。

起源:早期,阿里巴巴B2B公司因為存在杭州和美國雙機房部署,存在跨機房同步的業務需求。不過早期的資料庫同步業務,主要是基於trigger的方式獲取增量變更,不過從2010年開始,阿里系公司開始逐步的嘗試基於資料庫的日誌解析,獲取增量變更進行同步,由此衍生出了增量訂閱&消費的業務,從此開啟了一段新紀元。

基於日誌增量訂閱&消費支援的業務:

  1. 資料庫映象
  2. 資料庫實時備份
  3. 多級索引 (賣家和買家各自分庫索引)
  4. search build
  5. 業務cache重新整理
  6. 價格變化等重要業務訊息

工作原理

mysql主備複製實現:

從上層來看,複製分成三步:

  1. master將改變記錄到二進位制日誌(binary log)中(這些記錄叫做二進位制日誌事件,binary log events,可以通過show binlog events進行檢視);
  2. slave將master的binary log events拷貝到它的中繼日誌(relay log);
  3. slave重做中繼日誌中的事件,將改變反映它自己的資料。

canal的工作原理

原理相對比較簡單:

  1. canal模擬mysql slave的互動協議,偽裝自己為mysql slave,向mysql master傳送dump協議
  2. mysql master收到dump請求,開始推送binary log給slave(也就是canal)
  3. canal解析binary log物件(原始為byte流)

架構設計

個人理解,資料增量訂閱與消費應當有如下幾個點:

  1. 增量訂閱和消費模組應當包括binlog日誌抓取,binlog日誌解析,事件分發過濾(EventSink),儲存(EventStore)等主要模組。
  2. 如果需要確保HA可以採用Zookeeper儲存各個子模組的狀態,讓整個增量訂閱和消費模組實現無狀態化,當然作為consumer(客戶端)的狀態也可以儲存在zk之中。
  3. 整體上通過一個Manager System進行集中管理,分配資源。

可以參考下圖:

canal架構設計

說明:

  • server代表一個canal執行例項,對應於一個jvm
  • instance對應於一個數據佇列 (1個server對應1..n個instance)

instance模組:

  • eventParser (資料來源接入,模擬slave協議和master進行互動,協議解析)
  • eventSink (Parser和Store連結器,進行資料過濾,加工,分發的工作)
  • eventStore (資料儲存)
  • metaManager (增量訂閱&消費資訊管理器)

EventParser

整個parser過程大致可分為幾部:

  1. Connection獲取上一次解析成功的位置(如果第一次啟動,則獲取初始制定的位置或者是當前資料庫的binlog位點)
  2. Connection建立連線,發生BINLOG_DUMP命令
  3. Mysql開始推送Binary Log
  4. 接收到的Binary Log通過Binlog parser進行協議解析,補充一些特定資訊
  5. 傳遞給EventSink模組進行資料儲存,是一個阻塞操作,直到儲存成功
  6. 儲存成功後,定時記錄Binary Log位置

EventSink設計

說明:

  • 資料過濾:支援萬用字元的過濾模式,表名,欄位內容等
  • 資料路由/分發:解決1:n (1個parser對應多個store的模式)
  • 資料歸併:解決n:1 (多個parser對應1個store)
  • 資料加工:在進入store之前進行額外的處理,比如join

1 資料1:n業務 :

為了合理的利用資料庫資源, 一般常見的業務都是按照schema進行隔離,然後在mysql上層或者dao這一層面上,進行一個數據源路由,遮蔽資料庫物理位置對開發的影響,阿里系主要是通過cobar/tddl來解決資料來源路由問題。 所以,一般一個數據庫例項上,會部署多個schema,每個schema會有由1個或者多個業務方關注。

2 資料n:1業務:

同樣,當一個業務的資料規模達到一定的量級後,必然會涉及到水平拆分和垂直拆分的問題,針對這些拆分的資料需要處理時,就需要連結多個store進行處理,消費的位點就會變成多份,而且資料消費的進度無法得到儘可能有序的保證。 所以,在一定業務場景下,需要將拆分後的增量資料進行歸併處理,比如按照時間戳/全域性id進行排序歸併.

EventStore設計

目前實現了Memory記憶體、本地file儲存以及持久化到zookeeper以保障資料叢集共享。
Memory記憶體的RingBuffer設計:

定義了3個cursor

  • Put : Sink模組進行資料儲存的最後一次寫入位置
  • Get : 資料訂閱獲取的最後一次提取位置
  • Ack : 資料消費成功的最後一次消費位置

借鑑Disruptor的RingBuffer的實現,將RingBuffer拉直來看:

實現說明:

  • Put/Get/Ack cursor用於遞增,採用long型儲存
  • buffer的get操作,通過取餘或者與操作。(與操作: cusor & (size – 1) , size需要為2的指數,效率比較高)

Instance設計

instance代表了一個實際執行的資料佇列,包括了EventPaser,EventSink,EventStore等元件。
抽象了CanalInstanceGenerator,主要是考慮配置的管理方式:

1. manager方式: 和你自己的內部web console/manager系統進行對接。(alibaba內部使用方式)

2. spring方式:基於spring xml + properties進行定義,構建spring配置.

  • spring/memory-instance.xml 所有的元件(parser , sink , store)都選擇了記憶體版模式,記錄位點的都選擇了memory模式,重啟後又會回到初始位點進行解析。特點:速度最快,依賴最少
  • spring/file-instance.xml 所有的元件(parser , sink , store)都選擇了基於file持久化模式,注意,不支援HA機制.支援單機持久化
  • spring/default-instance.xml 所有的元件(parser , sink , store)都選擇了持久化模式,目前持久化的方式主要是寫入zookeeper,保證資料叢集共享. 支援HA
  • spring/group-instance.xml 主要針對需要進行多庫合併時,可以將多個物理instance合併為一個邏輯instance,提供客戶端訪問。場景:分庫業務。 比如產品資料拆分了4個庫,每個庫會有一個instance,如果不用group,業務上要消費資料時,需要啟動4個客戶端,分別連結4個instance例項。使用group後,可以在canal server上合併為一個邏輯instance,只需要啟動1個客戶端,連結這個邏輯instance即可.

Server設計

server代表了一個canal的執行例項,為了方便元件化使用,特意抽象了Embeded(嵌入式) / Netty(網路訪問)的兩種實現:

  • Embeded : 對latency和可用性都有比較高的要求,自己又能hold住分散式的相關技術(比如failover)
  • Netty : 基於netty封裝了一層網路協議,由canal server保證其可用性,採用的pull模型,當然latency會稍微打點折扣,不過這個也視情況而定。

增量訂閱/消費設計

具體的協議格式,可參見:CanalProtocol.proto
get/ack/rollback協議介紹:

  • Message getWithoutAck(int batchSize),允許指定batchSize,一次可以獲取多條,每次返回的物件為Message,包含的內容為:
  • a. batch id 唯一標識
  • b. entries 具體的資料物件,對應的資料物件格式:EntryProtocol.proto
  • void rollback(long batchId),顧命思議,回滾上次的get請求,重新獲取資料。基於get獲取的batchId進行提交,避免誤操作
  • void ack(long batchId),顧命思議,確認已經消費成功,通知server刪除資料。基於get獲取的batchId進行提交,避免誤操作
  • canal的get/ack/rollback協議和常規的jms協議有所不同,允許get/ack非同步處理,比如可以連續呼叫get多次,後續非同步按順序提交ack/rollback,專案中稱之為流式api.
  • 流式api設計的好處:
  • get/ack非同步化,減少因ack帶來的網路延遲和操作成本 (99%的狀態都是處於正常狀態,異常的rollback屬於個別情況,沒必要為個別的case犧牲整個效能)
  • get獲取資料後,業務消費存在瓶頸或者需要多程序/多執行緒消費時,可以不停的輪詢get資料,不停的往後傳送任務,提高並行化. (作者在實際業務中的一個case:業務資料消費需要跨中美網路,所以一次操作基本在200ms以上,為了減少延遲,所以需要實施並行化)

流式api設計:

  • 每次get操作都會在meta中產生一個mark,mark標記會遞增,保證執行過程中mark的唯一性
  • 每次的get操作,都會在上一次的mark操作記錄的cursor繼續往後取,如果mark不存在,則在last ack cursor繼續往後取
  • 進行ack時,需要按照mark的順序進行數序ack,不能跳躍ack. ack會刪除當前的mark標記,並將對應的mark位置更新為last ack cusor
  • 一旦出現異常情況,客戶端可發起rollback情況,重新置位:刪除所有的mark, 清理get請求位置,下次請求會從last ack cursor繼續往後取

資料格式

canal採用protobuff:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Entry      Header          logfileName [binlog檔名]          logfileOffset [binlog position]          executeTime [發生的變更]          schemaName          tableName          eventType [insert/update/delete型別]      entryType   [事務頭BEGIN/事務尾END/資料ROWDATA]      storeValue  [ byte 資料,可展開,對應的型別為RowChange]    RowChange      isDdl       [是否是ddl變更操作,比如create table/drop table]      sql     [具體的ddl sql]      rowDatas    [具體insert/update/delete的變更資料,可為多條, 1 個binlog event事件可對應多條變更,比如批處理]          beforeColumns [Column型別的陣列]          afterColumns [Column型別的陣列]      Column      index            sqlType     [jdbc type]      name        [column name]      isKey       [是否為主鍵]      updated     [是否發生過變更]      isNull      [值是否為 null ]      value       [具體的內容,注意為文字]

canal-message example:

比如資料庫中的表:

1 2 3 4 5 6 7 8 9 mysql> select * from person; +----+------+------+------+ | id | name | age  | sex  | +----+------+------+------+ 1 | zzh  |   10 | m    | 3 | zzh3 |   12 | f    | 4 | zzh4 |    5 | m    | +----+------+------+------+ 3 rows in set ( 0.00 sec)

更新一條資料(update person set age=15 where id=4):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 **************************************************** * Batch Id: [ 2 ] ,count : [ 3 ] , memsize : [ 165 ] , Time : 2016 - 09 - 07 15 : 54 : 18 * Start : [mysql-bin. 000003 : 6354 : 1473234846000 ( 2016 - 09 - 07 15 : 54 : 06 )] * End : [mysql-bin. 000003 : 6550 : 1473234846000 ( 2016 - 09 - 07 15 : 54 : 06 )] ****************************************************   ================> binlog[mysql-bin. 000003 : 6354 ] , executeTime : 1473234846000 , delay : 12225ms   BEGIN ----> Thread id: 67 ----------------> binlog[mysql-bin. 000003 : 6486 ] , name[canal_test,person] , eventType : UPDATE , executeTime : 1473234846000 , delay : 12225ms id : 4    type= int ( 11 ) name : zzh4    type=varchar( 100 ) age : 15    type= int ( 11 )    update= true sex : m    type= char ( 1 ) ----------------   END ----> transaction id: 308 ================> binlog[mysql-bin. 000003 : 6550 ] , executeTime : 1473234846000 , delay : 12240ms

HA機制設計

canal的HA分為兩部分,canal server和canal client分別有對應的ha實現:

  • canal server: 為了減少對mysql dump的請求,不同server上的instance要求同一時間只能有一個處於running,其他的處於standby狀態.
  • canal client: 為了保證有序性,一份instance同一時間只能由一個canal client進行get/ack/rollback操作,否則客戶端接收無法保證有序。

整個HA機制的控制主要是依賴了zookeeper的幾個特性,watcher和EPHEMERAL節點(和session生命週期繫結),可以看下我之前zookeeper的相關文章。

Canal Server:

大致步驟:

  1. canal server要啟動某個canal instance時都先向zookeeper進行一次嘗試啟動判斷 (實現:建立EPHEMERAL節點,誰建立成功就允許誰啟動)
  2. 建立zookeeper節點成功後,對應的canal server就啟動對應的canal instance,沒有建立成功的canal instance就會處於standby狀態
  3. 一旦zookeeper發現canal server A建立的節點消失後,立即通知其他的canal server再次進行步驟1的操作,重新選出一個canal server啟動instance.
  4. canal client每次進行connect時,會首先向zookeeper詢問當前是誰啟動了canal instance,然後和其建立連結,一旦連結不可用,會重新嘗試connect.
  5. Canal Client的方式和canal server方式類似,也是利用zokeeper的搶佔EPHEMERAL節點的方式進行控制.

HA配置架構圖(舉例)如下所示:

canal其他連結方式

canal還有幾種連線方式:

1. 單連

2. 兩個client+兩個instance+1個mysql

當mysql變動時,兩個client都能獲取到變動

3. 一個server+兩個instance+兩個mysql+兩個client

4. instance的standby配置

整體架構

從整體架構上來說canal是這種架構的(canal中沒有包含一個運維的console web來對接,但要運用於分散式環境中肯定需要一個Manager來管理):

一個總體的manager system對應於n個Canal Server(物理上來說是一臺伺服器), 那麼一個Canal Server對應於n個Canal Instance(destinations). 大體上是三層結構,第二層也需要Manager統籌運維管理。

那麼隨著Docker技術的興起,是否可以試一下下面的架構呢?

  • 一個docker中跑一個instance服務,相當於略去server這一層的概念。
  • Manager System中配置一個instance,直接調取一個docker釋出這個instance,其中包括向這個instance傳送配置資訊,啟動instance服務.
  • instance在執行過程中,定時重新整理binlog filename+ binlog position的資訊至zk。
  • 如果一個instance出現故障,instance本身報錯或者zk感知此node消失,則根據相應的資訊,比如上一步儲存的binlog filename+binlog position重新開啟一個docker服務,當然這裡可以適當的加一些重試機制。
  • 當要更新時,類似AB test, 先關閉一個docker,然後開啟新的已更新的替換,循序漸進的進行。
  • 當涉及到分表分庫時,多個物理表對應於一個邏輯表,可以將結果存於一個公共的模組(比如MQ),或者單獨存取也可以,具體情況具體分析
  • 儲存可以參考canal的多樣化:記憶體,檔案,zk,或者加入至MQ中
  • docker由此之外的工具管理,比如kubernetes
  • 也可以進一步新增HA的功能,兩個docker對應一個mysql,互為主備,類似Canal的HA架構。如果時效性不是貼彆強的場景,考慮到成本,此功能可以不採用。

總結

這裡總結了一下Canal的一些點,僅供參考:

  1. 原理:模擬mysql slave的互動協議,偽裝自己為mysql slave,向mysql master傳送dump協議;mysql master收到dump請求,開始推送binary log給slave(也就是canal);解析binary log物件(原始為byte流)
  2. 重複消費問題:在消費端解決。
  3. 採用開源的open-replicator來解析binlog
  4. canal需要維護EventStore,可以存取在Memory, File, zk
  5. canal需要維護客戶端的狀態,同一時刻一個instance只能有一個消費端消費
  6. 資料傳輸格式:protobuff
  7. 支援binlog format 型別:statement, row, mixed. 多次附加功能只能在row下使用,比如otter
  8. binlog position可以支援儲存在記憶體,檔案,zk中
  9. instance啟動方式:rpc/http; 內嵌
  10. 有ACK機制
  11. 無告警,無監控,這兩個功能都需要對接外部系統
  12. 方便快速部署。

參考資料

    1. https://github.com/alibaba/canal