1. 程式人生 > >信源編碼第五次作業-LMS最小均方演算法

信源編碼第五次作業-LMS最小均方演算法

LMS演算法是自適應濾波器中常用的一種演算法,與維納演算法不同的
是,其系統的係數隨輸入序列而改變。維納演算法中擷取輸入序列自相關函式的一段構造系統的最佳係數。而LMS演算法則是對初始化的濾波器係數依據最小均方誤差準則進行不斷修正來實現的。因此,理論上講LMS演算法的效能在同等條件下要優於維納演算法,但是LMS演算法是在一個初始化值得基礎上進行逐步調整得到的,因此,在系統進入穩定之前有一個調整的時間,這個時間受到演算法步長因子u的控制,在一定值範圍內,增大u會減小調整時間,但超過這個值範圍時系統不再收斂,u的最大取值為R的跡。權係數更新公式為:Wi+1=Wi+2ueiXi  
依據上述算式,制定LMS濾波器設計實現方法為: 

(1) 設計濾波器的初始化權係數W(0)=0,收斂因子u; 

(2) 計算輸入序列經過濾波器後的實際輸出值:out(n)=WT(n)*X(n); 

(3) 計算估計誤差e(n)=xd(n)-out(n); 

























 
 
(4) 計算n+1階的濾波器係數Wn+1=Wn+2*u*e(n)*X(n); (5) 重複(2)--(4)過程;