sklearn學習-3-樣本資料集
阿新 • • 發佈:2018-12-25
# -*- coding: utf-8 -*- """ Created on Mon Jul 2 16:02:56 2018 @author: GY """ #監督學習 #----------------------------------------------------------------------------------------------------------------------# import mglearn import matplotlib.pyplot as plt from sklearn.datasets import load_breast_cancer import numpy as np #--------------------------------------------------------------------------------------------------------------- #二分類資料集 #資料,標籤 X,y=mglearn.datasets.make_forge() mglearn.discrete_scatter(X[:,0],X[:,1],y)#第一個特徵-x,第二個特徵-y plt.legend(["Class 0","Class 1"],loc=4) plt.xlabel('Frist feature') plt.ylabel('Second feature') print(X.shape) #------------------------------------------------------------------------------------------------------------- #迴歸資料集 X,y=mglearn.datasets.make_wave(n_samples=40) plt.plot(X,y,'o') plt.ylim(-3,3) plt.xlabel('Feature') plt.ylabel('Target') #--------------------------------------------------------------------------------------------------------------------- #真實資料集 cancer=load_breast_cancer() #cancer.keys() #dict_keys(['data', 'target', 'target_names', 'DESCR', 'feature_names']) #cancer.data.shape #(569, 30) #建立特徵的分類,dict {n:v for n,v in zip(cancer.target_names,np.bincount(cancer.target)) }