基於有理逼近演算法的序列密碼的有理分數表示
題目描述
已知一條二元序列a(n)=(a0, a1, ..., an-1). 對1 ≤ k ≤ n, 求有限序列a(k)=(a0, a1, ..., ak-1)的有理分數表示. 序列a(n)請參見附件“sequence.txt”, 其中n = 1966000
設a(n)=(a0, a1, ..., an-1)是一條有限二元序列, 即ai ∈ {0,1},0 ≤ i ≤ n - 1. 若有理分數 p q滿足q是正奇數, gcd(p,q) = 1, 並且 p≡ q(a0 +a1*2+⋯+an-1*pow(2, n-1)) mod pow(2,n), 則稱 p q是序列a(n)的有理分數表示.
符號說明
同餘符號 ≡: 設n是一個正整數. 對任意的整數a和b, 有a≡ b mod n當且僅 當n整除a-b.
兩個整數a和b的最大公因子記為gcd(a, b).
對兩個整數a和b, 記Φ(a,b) = max {|a|,|b|}.
題目分析
對於一個二元序列求出有理分數表示,其中關鍵因素在三點:
1.q需為正奇數。
2.p跟q不能存在公因子
3.[p-q(a0+a1*2+......+an-1*pow(2, n-1))]%pow(2, n)==0 即可被2的n次方整除
設x = a0+a1*2+......+an-1*pow(2, n-1);即 [p-qx]%pow(2,n)==0
有理逼近演算法描述
其中1.a為不斷累加的功能,也就是上述分析中x的值。
2.f=(f1, f2); g=(g1, g2)
f1, f2, g1, g2的值之間沒有任何內在聯絡,只是這樣寫可以簡化一下過程。
3.g2存在一個坑點,g2即為q的值,雖然演算法描述中g2並沒有給出取值範圍,但題目中明確表示q為正奇數,也即是g2為正奇數
4.d的取值範圍,當abs(g1)!=abs(g2)時,d在-(f1+f2)/(g1+g2)和(f1-f2)/(g1-g2)中取
否則,d的範圍可設定為一個數據型別的最大值和最小值之間取。
有理逼近演算法程式碼實現
// vs_project1.cpp : 定義控制檯應用程式的入口點。 // #include "stdafx.h" #include <iostream> #include <algorithm> #include <string> #include <fstream> #include <cmath> #include <sstream> #include <cassert> #include <cstring> #include <fstream> using namespace std; long long abs_max(long long a, long long b) { return max(abs(a), abs(b)); } int main() { ios::sync_with_stdio(false); ifstream inf; inf.open("C://Users//49627//Desktop//sequence.txt"); if (!inf) cout << "error" << endl; char c; int num = 0; //控制位數 long double t = 0, f1, f2, g1, g2; long long mod; bool flag = false; while (!inf.eof() && num<45) { inf >> c; int tt = c - '0'; if (tt == 0 && !flag) { num++; continue; } else if(!flag) { t = pow(2, num); f1 = 0; f2 = 2; g1 = t; g2 = 1; flag = true; num++; continue; } t += tt * pow(2, num); mod = pow(2, num + 1); long long sum = t*g2 - g1; long long ss = sum % mod; if (ss == 0) { cout << "the first case: " << num << endl; f1 *= 2; f2 *= 2; } else if (abs_max(g1, g2) < abs_max(f1, f2)) { cout << "the second case: " << num << endl; long long mixn = 0x3f3f3f3f; long long x = 0, y = 0, a = 0, b = 0, d1 = -0x3f3f3f3f, d2 = 0x3f3f3f3f; if (abs(g1) != abs(g2)) { d1 = -(f1 + f2) / (g1 + g2); d2 = (f1 - f2) / (g1 - g2); if (d1 > d2) { long long d = d1; d1 = d2; d2 = d; } } if ((d1 - 100) % 2 == 0) d1 = d1 - 99; else d1 = d1 - 100; for (long long j = d1; j <= d2 + 100; j+=2) { long long temp = abs_max(f1 + j*g1, f2 + j*g2); if (mixn > temp && (f2 + j*g2) > 0) { mixn = temp; x = f1 + j*g1; y = f2 + j*g2; a = g1; b = g2; } } g1 = x; g2 = y; f1 = 2 * a; f2 = 2 * b; } else { cout << "the third case: " << num << endl; long long mixn = 0x3f3f3f3f; long long x = 0, y = 0, d1 = -9999, d2 = 9999; if (abs(g1) != abs(g2)) { d1 = -(f1 + f2) / (g1 + g2); d2 = (f1 - f2) / (g1 - g2); if (d1 > d2) { long long d = d1; d1 = d2; d2 = d; } } if ((d1 - 100) % 2 == 0) d1 = d1 - 99; else d1 = d1 - 100; for (long long j = d1; j <= d2 + 10; j+=2) { long long temp = abs_max(g1 + j*f1, g2 + j*f2); if (mixn > temp && (g2 + j*f2)>0) { mixn = temp; x = g1 + j*f1; y = g2 + j*f2; } } g1 = x; g2 = y; f1 *= 2; f2 *= 2; } num++; } cout << "f1:" << f1 << " " << "f2:" << f2 << " " << "g1:" << g1 << " " << "g2:" << g2 << endl; system("pause"); inf.close(); return 0; }
爆破驗證演算法正確性
#include <iostream>
#include <algorithm>
#include <string>
#include <fstream>
#include <cmath>
#include <sstream>
#include <cstring>
#include <fstream>
#define MAX_L 2005
#define is "0100000000100111111110001000001111111111011100000000111"
using namespace std;
class bign
{
public:
int len, s[MAX_L];//數的長度,記錄陣列
//建構函式
bign();
bign(const char*);
bign(int);
bool sign;//符號 1正數 0負數
string toStr() const;//轉化為字串,主要是便於輸出
friend istream& operator>>(istream &,bign &);//過載輸入流
friend ostream& operator<<(ostream &,bign &);//過載輸出流
//過載複製
bign operator=(const char*);
bign operator=(int);
bign operator=(const string);
//過載各種比較
bool operator>(const bign &) const;
bool operator>=(const bign &) const;
bool operator<(const bign &) const;
bool operator<=(const bign &) const;
bool operator==(const bign &) const;
bool operator!=(const bign &) const;
//過載四則運算
bign operator+(const bign &) const;
bign operator++();
bign operator++(int);
bign operator+=(const bign&);
bign operator-(const bign &) const;
bign operator--();
bign operator--(int);
bign operator-=(const bign&);
bign operator*(const bign &)const;
bign operator*(const int num)const;
bign operator*=(const bign&);
bign operator/(const bign&)const;
bign operator/=(const bign&);
//四則運算的衍生運算
bign operator%(const bign&)const;//取模(餘數)
bign factorial()const;//階乘
bign Sqrt()const;//整數開根(向下取整)
bign pow(const bign&)const;//次方
//輔助的函式
void clean();
~bign();
};
#define max(a,b) a>b ? a : b
#define min(a,b) a<b ? a : b
bign::bign()
{
memset(s, 0, sizeof(s));
len = 1;
sign = 1;
}
bign::bign(const char *num)
{
*this = num;
}
bign::bign(int num)
{
*this = num;
}
string bign::toStr() const
{
string res;
res = "";
for (int i = 0; i < len; i++)
res = (char)(s[i] + '0') + res;
if (res == "")
res = "0";
if (!sign&&res != "0")
res = "-" + res;
return res;
}
istream &operator>>(istream &in, bign &num)
{
string str;
in>>str;
num=str;
return in;
}
ostream &operator<<(ostream &out, bign &num)
{
out<<num.toStr();
return out;
}
bign bign::operator=(const char *num)
{
memset(s, 0, sizeof(s));
char a[MAX_L] = "";
if (num[0] != '-')
strcpy(a, num);
else
for (int i = 1; i < strlen(num); i++)
a[i - 1] = num[i];
sign = !(num[0] == '-');
len = strlen(a);
for (int i = 0; i < strlen(a); i++)
s[i] = a[len - i - 1] - 48;
return *this;
}
bign bign::operator=(int num)
{
if (num < 0)
sign = 0, num = -num;
else
sign = 1;
char temp[MAX_L];
sprintf(temp, "%d", num);
*this = temp;
return *this;
}
bign bign::operator=(const string num)
{
const char *tmp;
tmp = num.c_str();
*this = tmp;
return *this;
}
bool bign::operator<(const bign &num) const
{
if (sign^num.sign)
return num.sign;
if (len != num.len)
return len < num.len;
for (int i = len - 1; i >= 0; i--)
if (s[i] != num.s[i])
return sign ? (s[i] < num.s[i]) : (!(s[i] < num.s[i]));
return !sign;
}
bool bign::operator>(const bign&num)const
{
return num < *this;
}
bool bign::operator<=(const bign&num)const
{
return !(*this>num);
}
bool bign::operator>=(const bign&num)const
{
return !(*this<num);
}
bool bign::operator!=(const bign&num)const
{
return *this > num || *this < num;
}
bool bign::operator==(const bign&num)const
{
return !(num != *this);
}
bign bign::operator+(const bign &num) const
{
if (sign^num.sign)
{
bign tmp = sign ? num : *this;
tmp.sign = 1;
return sign ? *this - tmp : num - tmp;
}
bign result;
result.len = 0;
int temp = 0;
for (int i = 0; temp || i < (max(len, num.len)); i++)
{
int t = s[i] + num.s[i] + temp;
result.s[result.len++] = t % 10;
temp = t / 10;
}
result.sign = sign;
return result;
}
bign bign::operator++()
{
*this = *this + 1;
return *this;
}
bign bign::operator++(int)
{
bign old = *this;
++(*this);
return old;
}
bign bign::operator+=(const bign &num)
{
*this = *this + num;
return *this;
}
bign bign::operator-(const bign &num) const
{
bign b=num,a=*this;
if (!num.sign && !sign)
{
b.sign=1;
a.sign=1;
return b-a;
}
if (!b.sign)
{
b.sign=1;
return a+b;
}
if (!a.sign)
{
a.sign=1;
b=bign(0)-(a+b);
return b;
}
if (a<b)
{
bign c=(b-a);
c.sign=false;
return c;
}
bign result;
result.len = 0;
for (int i = 0, g = 0; i < a.len; i++)
{
int x = a.s[i] - g;
if (i < b.len) x -= b.s[i];
if (x >= 0) g = 0;
else
{
g = 1;
x += 10;
}
result.s[result.len++] = x;
}
result.clean();
return result;
}
bign bign::operator * (const bign &num)const
{
bign result;
result.len = len + num.len;
for (int i = 0; i < len; i++)
for (int j = 0; j < num.len; j++)
result.s[i + j] += s[i] * num.s[j];
for (int i = 0; i < result.len; i++)
{
result.s[i + 1] += result.s[i] / 10;
result.s[i] %= 10;
}
result.clean();
result.sign = !(sign^num.sign);
return result;
}
bign bign::operator*(const int num)const
{
bign x = num;
bign z = *this;
return x*z;
}
bign bign::operator*=(const bign&num)
{
*this = *this * num;
return *this;
}
bign bign::operator /(const bign&num)const
{
bign ans;
ans.len = len - num.len + 1;
if (ans.len < 0)
{
ans.len = 1;
return ans;
}
bign divisor = *this, divid = num;
divisor.sign = divid.sign = 1;
int k = ans.len - 1;
int j = len - 1;
while (k >= 0)
{
while (divisor.s[j] == 0) j--;
if (k > j) k = j;
char z[MAX_L];
memset(z, 0, sizeof(z));
for (int i = j; i >= k; i--)
z[j - i] = divisor.s[i] + '0';
bign dividend = z;
if (dividend < divid) { k--; continue; }
int key = 0;
while (divid*key <= dividend) key++;
key--;
ans.s[k] = key;
bign temp = divid*key;
for (int i = 0; i < k; i++)
temp = temp * 10;
divisor = divisor - temp;
k--;
}
ans.clean();
ans.sign = !(sign^num.sign);
return ans;
}
bign bign::operator/=(const bign&num)
{
*this = *this / num;
return *this;
}
bign bign::operator%(const bign& num)const
{
bign a = *this, b = num;
a.sign = b.sign = 1;
bign result, temp = a / b*b;
result = a - temp;
result.sign = sign;
return result;
}
bign bign::pow(const bign& num)const
{
bign result = 1;
for (bign i = 0; i < num; i++)
result = result*(*this);
return result;
}
bign bign::factorial()const
{
bign result = 1;
for (bign i = 1; i <= *this; i++)
result *= i;
return result;
}
void bign::clean()
{
if (len == 0) len++;
while (len > 1 && s[len - 1] == '\0')
len--;
}
bign bign::Sqrt()const
{
if(*this<0)return -1;
if(*this<=1)return *this;
bign l=0,r=*this,mid;
while(r-l>1)
{
mid=(l+r)/2;
if(mid*mid>*this)
r=mid;
else
l=mid;
}
return l;
}
bign::~bign()
{
}
///求出序列長度
/*
int main()
{
ios::sync_with_stdio(false);
ifstream myfile("C:\\Users\\49627\\Desktop\\全國高校密碼競賽\\賽題一\\sequence.txt");
string temp;
if (!myfile.is_open())
{
cout << "open file error!" << endl;
}
int sum = 0;
while(getline(myfile,temp))
{
int len = temp.length();
sum += len;
}
cout<<sum<<endl;
myfile.close();
return 0;
}
///1966000
*/
bign mixn(bign a, bign b)
{
if(a<0)
a *= -1;
if(a>b)
return a;
else
return b;
}
bool judge(bign a, bign b)
{
bign c=a<b?a:b;
for(bign i=2; i<=c; ++i)
if(a%i==0 && b%i==0)
return false;
return true;
}
int main()
{
ios::sync_with_stdio(false);
int n=0;
ofstream outf;
outf.open("output.txt");
//outf<<"n\tp\tq\tx\tpow(2,n)"<<endl;
while(n<200)
{
bign a=0, b;
for(int i=0; i<n; ++i)
{
bool tt = is[i] - '0';
a += tt * pow(2, i);
}
b = pow(2, n);
bign p, q, abm=0x3f3f3f3f;
bign i=0, j=0;
for(p=-9999999; p<=9999999; ++p)
{
cout<<p<<endl;
for(q=3;q<=9999999;++q)
{
if((p-q*a)%b==0 && judge(q, p))
{
bign x = mixn(p, q);
if(abm > x)
{
abm = x;
i=p;
j=q;
cout<<abm<<" "<<p<<" "<<q<<endl;
}
}
}
}
outf<<n<<"\t"<<i<<"\t"<<j<<"\t"<<a<<"\t"<<b<<endl;
cout<<n<<endl;
n++;
}
outf.close();
return 0;
}