AVL樹的平衡調整,LL,LR,RR,RL旋轉 (二)
1. 概述
AVL樹是最早提出的自平衡二叉樹,在AVL樹中任何節點的兩個子樹的高度最大差別為一,所以它也被稱為高度平衡樹。AVL樹得名於它的發明者G.M. Adelson-Velsky和E.M. Landis。AVL樹種查詢、插入和刪除在平均和最壞情況下都是O(log n),增加和刪除可能需要通過一次或多次樹旋轉來重新平衡這個樹。本文介紹了AVL樹的設計思想和基本操作。
2. 基本術語
有四種種情況可能導致二叉查詢樹不平衡,分別為:
(1)LL:插入一個新節點到根節點的左子樹(Left)的左子樹(Left),導致根節點的平衡因子由1變為2
(2)RR:插入一個新節點到根節點的右子樹(Right)的右子樹(Right),導致根節點的平衡因子由-1變為-2
(3)LR:插入一個新節點到根節點的左子樹(Left)的右子樹(Right),導致根節點的平衡因子由1變為2
(4)RL:插入一個新節點到根節點的右子樹(Right)的左子樹(Left),導致根節點的平衡因子由-1變為-2
針對四種種情況可能導致的不平衡,可以通過旋轉使之變平衡。有兩種基本的旋轉:
(1)左旋轉:將根節點旋轉到(根節點的)右孩子的左孩子位置
(2)右旋轉:將根節點旋轉到(根節點的)左孩子的右孩子位置
3. AVL樹的旋轉操作
AVL樹的基本操作是旋轉,有四種旋轉方式,分別為:左旋轉,右旋轉,左右旋轉(先左後右),右左旋轉(先右後左),實際上,這四種旋轉操作兩兩對稱,因而也可以說成兩類旋轉操作。
基本的資料結構:
1 2 3 4 5 6 7 8 9 10 11 12 13 |
typedef struct
Node* Tree;
typedef struct
Node* Node_t;
typedef Type
int ;
struct Node{
Node_t left;
Node_t right;
int height;
Type data;
};
int
Height(Node_t node) {
return node->height;
}
|
3.1 LL
LL情況需要右旋解決,如下圖所示:
程式碼為:
1 2 3 4 5 6 7 8 |
Node_t RightRotate(Node_t a) { b = a->left;
a->left = b->right;
b->right = a;
a->height = Max(Height(a->left), Height(a->right));
b->height = Max(Height(b->left), Height(b->right));
return b;
}
|
3.2 RR
RR情況需要左旋解決,如下圖所示:
程式碼為:
1 2 3 4 5 6 7 8 |
Node_t LeftRotate(Node_t a) {
b = a->right;
a->right = b->left;
b->left = a;
a->height = Max(Height(a->left), Height(a->right));
b->height = Max(Height(b->left), Height(b->right));
return b;
}
|
3.3 LR
LR情況需要左右(先B左旋轉,後A右旋轉)旋解決,如下圖所示:
程式碼為:
1 2 3 4 |
Node_t LeftRightRotate(Node_t a) {
a->left = LeftRotate(a->left);
return RightRotate(a);
}
|
3.4 RL
RL情況需要右左旋解決(先B右旋轉,後A左旋轉),如下圖所示:
程式碼為:
1 2 3 4 |
Node_t RightLeftRotate(Node_t a) {
a->right = RightRotate(a->right);
return LeftRotate(a);
}
|
#include<stdio.h>
#include <stdlib.h>
typedef struct _Tree
{
int nValue;
struct _Tree* pLeft;
struct _Tree* pRight;
struct _Tree* pFather;
}Tree;
Tree* root = NULL;
void CreateTree()
{
root = (Tree*)malloc(sizeof(Tree));
root->nValue = 1;
root->pFather = NULL;
root->pLeft = (Tree*)malloc(sizeof(Tree));
root->pLeft->nValue = 2;
root->pLeft->pFather = root;
root->pLeft->pLeft = (Tree*)malloc(sizeof(Tree));
root->pLeft->pLeft->nValue = 4;
root->pLeft->pLeft->pLeft = NULL;
root->pLeft->pLeft->pRight = NULL;
root->pLeft->pLeft->pFather = root->pLeft;
root->pLeft->pRight = (Tree*)malloc(sizeof(Tree));
root->pLeft->pRight->nValue = 5;
root->pLeft->pRight->pLeft = NULL;
root->pLeft->pRight->pRight = NULL;
root->pLeft->pRight->pFather = root->pLeft;
root->pRight = (Tree*)malloc(sizeof(Tree));
root->pRight->nValue = 3;
root->pRight->pLeft = NULL;
root->pRight->pRight = NULL;
root->pRight->pFather = root;
}
void Rotate_Right(Tree* tree)
{
Tree* temp = tree->pLeft;
// 修改三個子節點
tree->pLeft = temp->pRight;
temp->pRight = tree;
if (tree->pFather == NULL)
{
root = temp;
}
else
{
// 看 tree 原來 放在他父親節點的 左邊還是右邊
if (tree->pFather->pLeft == tree)
{
tree->pFather->pLeft = temp;
}
else
{
tree->pFather->pRight = temp;
}
}
// 修改 三個父親
temp->pFather = tree->pFather;
tree->pFather = temp;
// 看 tree 有沒有左
if(tree->pLeft != NULL)
{
tree->pLeft->pFather = tree;
}
}
void Rotate_Left(Tree* tree)
{
Tree* temp = tree->pRight;
// 修改三個子節點
tree->pRight = temp->pLeft;
temp->pLeft = tree;
if (tree->pFather == NULL)
{
root = temp;
}
else
{
// 看 tree 原來 放在他父親節點的 左邊還是右邊
if (tree->pFather->pLeft == tree)
{
tree->pFather->pLeft = temp;
}
else
{
tree->pFather->pRight = temp;
}
}
// 修改 三個父親
temp->pFather = tree->pFather;
tree->pFather = temp;
// 看 tree 有沒有左
if(tree->pRight != NULL)
{
tree->pRight->pFather = tree;
}
}
void Qian(Tree* tree)
{
if (tree)
{
printf("%d ",tree->nValue);
Qian(tree->pLeft);
Qian(tree->pRight);
}
}
int main()
{
CreateTree();
Qian(root);
printf("\n-----------------------\n");
Rotate_Right(root);
Qian(root);
printf("\n-----------------------\n");
Rotate_Left(root);
Qian(root);
printf("\n-----------------------\n");
system("pause");
return 0;
}