Python畫圖練習
阿新 • • 發佈:2018-12-26
import numpy as np import matplotlib.pyplot as plt import pylab as pl %matplotlib inline ''' #段落註釋 plt.figure(1) #建立圖示1 plt.figure(2) #建立圖表2 ax1 = plt.subplot(211) #在圖表2中建立子圖1 ax2 = plt.subplot(212) #在圖表2中建立子圖2 x = np.linspace(0 , 3 , 100) for i in range(5): plt.figure(1) #選擇圖表1 plt.plot(x , np.exp(i * x/3)) plt.sca(ax1) #選擇圖表2的子圖1 plt.plot(x , np.sin(i*x)) plt.sca(ax2) plt.plot(x , np.cos(i*x)) plt.show() x1 = range(0 , 50) y1 = [num**2 for num in x1] x2 = [0,1] y2 = [0,1] #pl.plot(x1 , y1) #pl.plot(x1 , y1 , 'o') #散點圖 pl.plot(x1 , y1 , '--') #線條樣式散點圖 pl.show() Fig = plt.figure(figsize=(8,4)) Ax = Fig.add_subplot(111) Ax.plot(x1 , y1 , x2 , y2) Ax2 = Fig.add_subplot(121) Ax2.plot(x1 ,np.cos(x1)) Fig.show() Fig.savefig("test.pdf") ''' """ #段落註釋 x = [1, 2, 3, 4, 5]# Make an array of x values y = [1, 4, 9, 16, 25]# Make an array of y values for each x value pl.plot(x, y)# use pylab to plot x and y pl.title('Plot of y vs. x')# give plot a title pl.xlabel('x axis') #make axis labels pl.ylabel('y axis') pl.xlim(0.0, 7.0)# set axis limits pl.ylim(0.0, 30.) pl.show()# show the plot on the screen """ ''' x1 = [1, 2, 3, 4, 5]# Make x, y arrays for each graph y1 = [1, 4, 9, 16, 25] x2 = [1, 2, 4, 6, 8] y2 = [2, 4, 8, 12, 16] pl.plot(x1, y1, 'r')# use pylab to plot x and y設定紅色 pl.plot(x2, y2, 'g') pl.title('Plot of y vs. x')# give plot a title pl.xlabel('x axis')# make axis labels pl.ylabel('y axis') pl.xlim(0.0, 9.0)# set axis limits pl.ylim(0.0, 30.) pl.show()# show the plot on the screen ''' ''' #折線圖和散點圖 x1 = [1, 2, 3, 4, 5]# Make x, y arrays for each graph y1 = [1, 4, 9, 16, 25] x2 = [1, 2, 4, 6, 8] y2 = [2, 4, 8, 12, 16] p1 ,=pl.plot(x1, y1, 'r')# use pylab to plot x and y設定紅色 p2 ,=pl.plot(x2, y2, 'go') pl.title('Plot of y vs. x')# give plot a title pl.xlabel('x axis')# make axis labels pl.ylabel('y axis') pl.xlim(0.0, 9.0)# set axis limits pl.ylim(0.0, 30.) pl.legend([p1 , p2] ,('red line' ,'green circles') , numpoints = 1) ####### #pl.legend(loc='upper left') pl.show()# show the plot on the screen ''' #柱狀圖 data = np.random.normal(5.0, 3.0, 1000) # make a histogram of the data array pl.hist(data) # make plot labels #pl.hist(data, histtype='stepfilled') #沒有黑色輪廓 pl.xlabel('data') pl.show()