全排列演算法及其C++實現(轉)
阿新 • • 發佈:2018-12-27
第十六章、全排列問題
53.字串的排列。
題目:輸入一個字串,打印出該字串中字元的所有排列。
例如輸入字串abc,則輸出由字元a、b、c 所能排列出來的所有字串
abc、acb、bac、bca、cab 和cba。
分析:此題最初整理於去年的微軟面試100題中第53題,第二次整理於微軟、Google等公司非常好的面試題及解答[第61-70題] 第67題。無獨有偶,這個問題今年又出現於今年的2011.10.09百度筆試題中。ok,接下來,咱們先好好分析這個問題。
- 一、遞迴實現
從集合中依次選出每一個元素,作為排列的第一個元素,然後對剩餘的元素進行全排列,如此遞迴處理,從而得到所有元素的全排列。以對字串abc進行全排列為例,我們可以這麼做:以abc為例
固定a,求後面bc的排列:abc,acb,求好後,a和b交換,得到bac
固定b,求後面ac的排列:bac,bca,求好後,c放到第一位置,得到cba
固定c,求後面ba的排列:cba,cab。程式碼可如下編寫所示:
- template <typename T>
- void CalcAllPermutation_R(T perm[], int first, int num)
- {
- if (num <= 1) {
- return;
- }
- for (int i = first; i < first + num; ++i) {
- swap(perm[i], perm[first]);
- CalcAllPermutation_R(perm, first + 1, num - 1);
- swap(perm[i], perm[first]);
- }
- }
- void Permutation(char* pStr, char* pBegin);
- void Permutation(char* pStr)
- {
- Permutation(pStr, pStr);
- }
- void Permutation(char* pStr, char* pBegin)
- {
- if(!pStr || !pBegin)
- return;
- if(*pBegin == '\0')
- {
- printf("%s\n", pStr);
- }
- else
- {
- for(char* pCh = pBegin; *pCh != '\0'; ++ pCh)
- {
- // swap pCh and pBegin
- char temp = *pCh;
- *pCh = *pBegin;
- *pBegin = temp;
- Permutation(pStr, pBegin + 1);
- // restore pCh and pBegin
- temp = *pCh;
- *pCh = *pBegin;
- *pBegin = temp;
- }
- }
- }
- 二、字典序排列
把升序的排列(當然,也可以實現為降序)作為當前排列開始,然後依次計算當前排列的下一個字典序排列。
對當前排列從後向前掃描,找到一對為升序的相鄰元素,記為i和j(i < j)。如果不存在這樣一對為升序的相鄰元素,則所有排列均已找到,演算法結束;否則,重新對當前排列從後向前掃描,找到第一個大於i的元素k,交換i和k,然後對從j開始到結束的子序列反轉,則此時得到的新排列就為下一個字典序排列。這種方式實現得到的所有排列是按字典序有序的,這也是C++ STL演算法next_permutation的思想。演算法實現如下:
- template <typename T>
- void CalcAllPermutation(T perm[], int num)
- {
- if (num < 1)
- return;
- while (true) {
- int i;
- for (i = num - 2; i >= 0; --i) {
- if (perm[i] < perm[i + 1])
- break;
- }
- if (i < 0)
- break; // 已經找到所有排列
- int k;
- for (k = num - 1; k > i; --k) {
- if (perm[k] > perm[i])
- break;
- }
- swap(perm[i], perm[k]);
- reverse(perm + i + 1, perm + num);
- }
- }
轉自 http://blog.csdn.net/v_july_v/article/details/6879101