[LeetCode] Minimum Height Trees 最小高度樹
For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.
Format
The graph contains n
nodes which are labeled from 0
to n - 1
. You will be given the number n
and a list of undirected edges
(each edge is a pair of labels).
You can assume that no duplicate edges will appear in edges
. Since all edges are undirected, [0, 1]
is the same as [1, 0]
and thus will not appear together in edges
Example 1:
Given n = 4
, edges = [[1, 0], [1, 2], [1, 3]]
0 | 1 / \ 2 3
return [1]
Example 2:
Given n = 6
, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]
0 1 2 \ | / 3 | 4 | 5
return [3, 4]
Hint:
- How many MHTs can a graph have at most?
Note:
(1) According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”
(2) The height of a rooted tree is the number of edges on the longest downward path between the root and a leaf.
Credits:
Special thanks to @peisi for adding this problem and creating all test cases.
Update (2015-11-25):
The function signature had been updated to return List<Integer>
instead of integer[]
. Please click the reload button above the code editor to reload the newest default code definition.
這道題雖然是樹的題目,但是跟其最接近的題目是Course Schedule 課程清單和Course Schedule II 課程清單之二。由於LeetCode中的樹的題目主要都是針對於二叉樹的,而這道題雖說是樹但其實本質是想考察圖的知識,這道題剛開始在拿到的時候,我最先想到的解法是遍歷的點,以每個點都當做根節點,算出高度,然後找出最小的,但是一時半會又寫不出程式來,於是上網看看大家的解法,發現大家推崇的方法是一個類似剝洋蔥的方法,就是一層一層的褪去葉節點,最後剩下的一個或兩個節點就是我們要求的最小高度樹的根節點,這種思路非常的巧妙,而且實現起來也不難,跟之前那到課程清單的題一樣,我們需要建立一個圖g,是一個二維陣列,其中g[i]是一個一維陣列,儲存了i節點可以到達的所有節點。我們開始將所有隻有一個連線邊的節點(葉節點)都存入到一個佇列queue中,然後我們遍歷每一個葉節點,通過圖來找到和其相連的節點,並且在其相連節點的集合中將該葉節點刪去,如果刪完後此節點也也變成一個葉節點了,加入佇列中,再下一輪刪除。那麼我們刪到什麼時候呢,當節點數小於等於2時候停止,此時剩下的一個或兩個節點就是我們要求的最小高度樹的根節點啦,參見程式碼如下:
C++ 解法一:
class Solution { public: vector<int> findMinHeightTrees(int n, vector<pair<int, int> >& edges) { if (n == 1) return {0}; vector<int> res; vector<unordered_set<int>> adj(n); queue<int> q; for (auto edge : edges) { adj[edge.first].insert(edge.second); adj[edge.second].insert(edge.first); } for (int i = 0; i < n; ++i) { if (adj[i].size() == 1) q.push(i); } while (n > 2) { int size = q.size(); n -= size; for (int i = 0; i < size; ++i) { int t = q.front(); q.pop(); for (auto a : adj[t]) { adj[a].erase(t); if (adj[a].size() == 1) q.push(a); } } } while (!q.empty()) { res.push_back(q.front()); q.pop(); } return res; } };
Java 解法一:
public class Solution { public List<Integer> findMinHeightTrees(int n, int[][] edges) { if (n == 1) return Collections.singletonList(0); List<Integer> leaves = new ArrayList<>(); List<Set<Integer>> adj = new ArrayList<>(n); for (int i = 0; i < n; ++i) adj.add(new HashSet<>()); for (int[] edge : edges) { adj.get(edge[0]).add(edge[1]); adj.get(edge[1]).add(edge[0]); } for (int i = 0; i < n; ++i) { if (adj.get(i).size() == 1) leaves.add(i); } while (n > 2) { n -= leaves.size(); List<Integer> newLeaves = new ArrayList<>(); for (int i : leaves) { int t = adj.get(i).iterator().next(); adj.get(t).remove(i); if (adj.get(t).size() == 1) newLeaves.add(t); } leaves = newLeaves; } return leaves; } }
此題還有遞迴的解法(未完待續...)
類似題目:
參考資料: