執行緒池 Executors
阿新 • • 發佈:2018-12-27
import static java.util.concurrent.TimeUnit.NANOSECONDS; import java.util.concurrent.AbstractExecutorService; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.FutureTask; import java.util.concurrent.LinkedBlockingQueue; import java.util.concurrent.ScheduledExecutorService; import java.util.concurrent.ScheduledFuture; import java.util.concurrent.ScheduledThreadPoolExecutor; import java.util.concurrent.SynchronousQueue; import java.util.concurrent.ThreadPoolExecutor; import java.util.concurrent.TimeUnit; import java.util.concurrent.ScheduledThreadPoolExecutor.DelayedWorkQueue; public class UseExecutors { public static void main(String[] args) { ExecutorService p0 = Executors.newFixedThreadPool(10); ExecutorService p1 = Executors.newSingleThreadExecutor(); ExecutorService p2 = Executors.newCachedThreadPool(); ExecutorService p4 = Executors.newScheduledThreadPool(10); } /** * Creates a thread pool that reuses a fixed number of threads * operating off a shared unbounded queue. At any point, at most * {@code nThreads} threads will be active processing tasks. * If additional tasks are submitted when all threads are active, * they will wait in the queue until a thread is available. * If any thread terminates due to a failure during execution * prior to shutdown, a new one will take its place if needed to * execute subsequent tasks. The threads in the pool will exist * until it is explicitly {@link ExecutorService#shutdown shutdown}. * * @param nThreads the number of threads in the pool * @return the newly created thread pool * @throws IllegalArgumentException if {@code nThreads <= 0} */ public static ExecutorService newFixedThreadPool(int nThreads) { return new ThreadPoolExecutor(nThreads, nThreads, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>()); } /** * Creates a thread pool that creates new threads as needed, but * will reuse previously constructed threads when they are * available. These pools will typically improve the performance * of programs that execute many short-lived asynchronous tasks. * Calls to {@code execute} will reuse previously constructed * threads if available. If no existing thread is available, a new * thread will be created and added to the pool. Threads that have * not been used for sixty seconds are terminated and removed from * the cache. Thus, a pool that remains idle for long enough will * not consume any resources. Note that pools with similar * properties but different details (for example, timeout parameters) * may be created using {@link ThreadPoolExecutor} constructors. * * @return the newly created thread pool */ public static ExecutorService newCachedThreadPool() { return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, new SynchronousQueue<Runnable>()); } /** * Creates an Executor that uses a single worker thread operating * off an unbounded queue. (Note however that if this single * thread terminates due to a failure during execution prior to * shutdown, a new one will take its place if needed to execute * subsequent tasks.) Tasks are guaranteed to execute * sequentially, and no more than one task will be active at any * given time. Unlike the otherwise equivalent * {@code newFixedThreadPool(1)} the returned executor is * guaranteed not to be reconfigurable to use additional threads. * * @return the newly created single-threaded Executor */ public static ExecutorService newSingleThreadExecutor() { return new FinalizableDelegatedExecutorService (new ThreadPoolExecutor(1, 1, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>())); } /** * Creates a thread pool that can schedule commands to run after a * given delay, or to execute periodically. * @param corePoolSize the number of threads to keep in the pool, * even if they are idle * @return a newly created scheduled thread pool * @throws IllegalArgumentException if {@code corePoolSize < 0} */ public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) { return new ScheduledThreadPoolExecutor(corePoolSize); } /** * Creates a new {@code ScheduledThreadPoolExecutor} with the * given core pool size. * * @param corePoolSize the number of threads to keep in the pool, even * if they are idle, unless {@code allowCoreThreadTimeOut} is set * @throws IllegalArgumentException if {@code corePoolSize < 0} */ public ScheduledThreadPoolExecutor(int corePoolSize) { super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS, new DelayedWorkQueue()); } /** * @since 1.5 * @author Doug Lea */ public class ScheduledThreadPoolExecutor extends ThreadPoolExecutor implements ScheduledExecutorService { }
import java.util.concurrent.Executors; import java.util.concurrent.ScheduledExecutorService; import java.util.concurrent.ScheduledFuture; import java.util.concurrent.TimeUnit; class Temp extends Thread { public void run() { System.out.println("run"); } } public class ScheduledJob { public static void main(String args[]) throws Exception { Temp command = new Temp(); ScheduledExecutorService scheduler = Executors.newScheduledThreadPool(1); ScheduledFuture<?> scheduleTask = scheduler.scheduleWithFixedDelay(command, 5, 1, TimeUnit.SECONDS); } }