Artificial intelligence helps reveal how people process abstract thought
As artificial intelligence becomes more sophisticated, much of the public attention has focused on how successfully these technologies can compete against humans at chess and other strategy games. A philosopher from the University of Houston has taken a different approach, deconstructing the complex neural networks used in machine learning to shed light on how humans process abstract learning. "As we rely more and more on these systems, it is important to know how they work and why," said Cameron Buckner, assistant professor of philosophy and author of a paper exploring the topic published in the journal Synthese. Better understanding how the systems work, in turn, led him to insights into the nature of human learning. Philosophers have debated the origins of human knowledge since the days of Plato - is it innate, based on logic, or does knowledge come from sensory experience in the world?