OpenCV3模板匹配
阿新 • • 發佈:2018-12-28
模板匹配,就是在一幅影象中尋找另一幅模板影象最匹配(也就是最相似)的部分的技術。
通過在輸入影象image
上滑動影象塊,對實際的影象塊和模板影象templ
進行匹配。
單目標匹配
#include "pch.h"
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <iostream>
#include <stdio.h>
using namespace std;
using namespace cv;
int main()
{
Mat img, templ, result;
img = imread("green.jpg");
templ = imread("football.jpg");
//1.構建結果影象resultImg(注意大小和型別)
//如果原圖(待搜尋影象)尺寸為W x H, 而模版尺寸為 w x h, 則結果影象尺寸一定是(W-w+1)x(H-h+1)
//結果影象必須為單通道32位浮點型影象
int result_cols = img.cols - templ.cols + 1;
int result_rows = img. rows - templ.rows + 1;
result.create(result_cols, result_rows, CV_32FC1);
//2.模版匹配
//這裡我們使用的匹配演算法是標準平方差匹配 method=CV_TM_SQDIFF_NORMED,數值越小匹配度越好
matchTemplate(img, templ, result, CV_TM_SQDIFF_NORMED);
//3.正則化(歸一化到0-1)
normalize(result, result, 0, 1, NORM_MINMAX, -1, Mat());
//4.找出resultImg中的最大值及其位置
double minVal = -1;
double maxVal;
Point minLoc;
Point maxLoc;
Point matchLoc;
cout << "匹配度:" << minVal << endl;
// 定位極值的函式
minMaxLoc(result, &minVal, &maxVal, &minLoc, &maxLoc, Mat());
cout << "匹配度:" << minVal << endl;
cout << "minPosition: " << minLoc << endl;
cout << "maxPosition: " << maxLoc << endl;
matchLoc = minLoc;
//5.根據resultImg中的最大值位置在源圖上畫出矩形和中心點
Point center = Point(minLoc.x + templ.cols / 2, minLoc.y + templ.rows / 2);
rectangle(img, matchLoc, Point(matchLoc.x + templ.cols, matchLoc.y + templ.rows), Scalar(0, 255, 0), 2, 8, 0);
circle(img, center, 2, Scalar(255, 0, 0), 2);
imshow("img", img);
imshow("template", templ);
waitKey(0);
return 0;
}
結果:
多目標模板匹配
///多目標模板匹配
#include "pch.h"
#include <opencv2/opencv.hpp>
using namespace cv;
#include <iostream>
using namespace std;
int main()
{
Mat srcImg = imread("screen.png", CV_LOAD_IMAGE_COLOR);
Mat tempImg = imread("line.jpg", CV_LOAD_IMAGE_COLOR);
//1.構建結果影象resultImg(注意大小和型別)
//如果原圖(待搜尋影象)尺寸為W x H, 而模版尺寸為 w x h, 則結果影象尺寸一定是(W-w+1)x(H-h+1)
//結果影象必須為單通道32位浮點型影象
int width = srcImg.cols - tempImg.cols + 1;
int height = srcImg.rows - tempImg.rows + 1;
Mat resultImg(Size(width, height), CV_32FC1);
//2.模版匹配
matchTemplate(srcImg, tempImg, resultImg, CV_TM_CCOEFF_NORMED);
imshow("result", resultImg);
//3.正則化(歸一化到0-1)
normalize(resultImg, resultImg, 0, 1, NORM_MINMAX, -1);
//4.遍歷resultImg,給定篩選條件,篩選出前幾個匹配位置
int tempX = 0;
int tempY = 0;
char prob[10] = { 0 };
//4.1遍歷resultImg
for (int i = 0; i < resultImg.rows;i++)
{
for (int j = 0; j < resultImg.cols; j++)
{
//4.2獲得resultImg中(j,x)位置的匹配值matchValue
double matchValue = resultImg.at<float>(i, j);
//sprintf(prob, "%.2f", matchValue);
//4.3給定篩選條件
//條件1:概率值大於0.9
//條件2:任何選中的點在x方向和y方向上都要比上一個點大5(避免畫邊框重影的情況)
if (matchValue > 0.9&& abs(i - tempY) > 5 && abs(j - tempX) > 5)
{
//5.給篩選出的點畫出邊框和文字
rectangle(srcImg, Point(j, i), Point(j + tempImg.cols, i + tempImg.rows), Scalar(0, 255, 0), 1, 8);
putText(srcImg, prob, Point(j, i + 100), CV_FONT_BLACK, 1, Scalar(0, 0, 255), 1);
tempX = j;
tempY = i;
}
}
}
imshow("srcImg", srcImg);
imshow("template", tempImg);
waitKey(0);
return 0;
}
視訊單目標匹配
///視訊單目標模板匹配
#include "pch.h"
#include "opencv2/opencv.hpp"
using namespace cv;
#include <iostream>
using namespace std;
int main()
{
//1.定義VideoCapture類物件video,讀取視訊
VideoCapture video("1.mp4");
//1.1.判斷視訊是否開啟
if (!video.isOpened())
{
cout << "video open error!" << endl;
return 0;
}
//2.迴圈讀取視訊的每一幀,對每一幀進行模版匹配
while (1)
{
//2.1.讀取幀
Mat frame;
video >> frame;
//2.2.對幀進行異常檢測
if (frame.empty())
{
cout << "frame empty" << endl;
break;
}
//2.3.對幀進行模版匹配
Mat tempImg = imread("green.JPG", CV_LOAD_IMAGE_COLOR);
cout << "Size of template: " << tempImg.size() << endl;
//2.3.1.構建結果影象resultImg(注意大小和型別)
//如果原圖(待搜尋影象)尺寸為W x H, 而模版尺寸為 w x h, 則結果影象尺寸一定是(W-w+1)x(H-h+1)
//結果影象必須為單通道32位浮點型影象
int width = frame.cols - tempImg.cols + 1;
int height = frame.rows - tempImg.rows + 1;
Mat resultImg(Size(width, height), CV_32FC1);
//2.3.2.模版匹配
matchTemplate(frame, tempImg, resultImg, CV_TM_CCOEFF_NORMED);
imshow("result", resultImg);
//2.3.3.正則化(歸一化到0-1)
normalize(resultImg, resultImg, 0, 1, NORM_MINMAX, -1);
//2.3.4.找出resultImg中的最大值及其位置
double minValue = 0;
double maxValue = 0;
Point minPosition;
Point maxPosition;
minMaxLoc(resultImg, &minValue, &maxValue, &minPosition, &maxPosition);
cout << "minValue: " << minValue << endl;
cout << "maxValue: " << maxValue << endl;
cout << "minPosition: " << minPosition << endl;
cout << "maxPosition: " << maxPosition << endl;
//2.3.5.根據resultImg中的最大值位置在源圖上畫出矩形
rectangle(frame, maxPosition, Point(maxPosition.x + tempImg.cols, maxPosition.y + tempImg.rows), Scalar(0, 255, 0), 1, 8);
imshow("srcImg", frame);
imshow("template", tempImg);
if (waitKey(10) == 27)
{
cout << "ESC退出" << endl;
break;
};
}
return 0;
}
參考:
https://www.cnblogs.com/skyfsm/p/6884253.html
https://blog.csdn.net/abc8730866/article/details/68487029
https://www.w3cschool.cn/opencv/opencv-pswj2dbc.html