1. 程式人生 > >tensorflow100天-第4天:邏輯迴歸

tensorflow100天-第4天:邏輯迴歸

程式碼

# coding:utf-8
# zhong
import  tensorflow as tf

# Import MINST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

learning_rate = 0.01
training_epochs = 25
batch_size = 100
display_step = 1

x = tf.placeholder(tf.float32,
[None, 784]) y = tf.placeholder(tf.float32, [None,10]) w = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros(10)) pred = tf.nn.softmax(tf.matmul(x, w) + b) cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred), reduction_indices=1)) optimizer = tf.train.GradientDescentOptimizer(learning_rate).
minimize(cost) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) for epoch in range(training_epochs): avg_cost = 0 total_batch = int(mnist.train.num_examples/batch_size) for i in range(total_batch): xs, ys = mnist.train.next_batch(
batch_size) _,c = sess.run([optimizer, cost], feed_dict={x: xs, y:ys}) avg_cost += c/total_batch if (epoch + 1) % display_step == 0: print('epoch:', '%04d'%(epoch+1),'cost:','{:.9f}'.format(avg_cost)) print('finished') # Test model correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) # Calculate accuracy for 3000 examples accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print("Accuracy:", accuracy.eval({x: mnist.test.images[:3000], y: mnist.test.labels[:3000]}))

總結

  1. tensorflow的交叉熵的寫法
  2. pred應該是一個靜態圖,可以直接進行驗證,eval,比pytorch靈活
  3. 宣告輸入變數佔位符的形狀,tf.Variable(tf.float32,[None, 784])