pytorch報錯:ValueError: Expected more than 1 value per channel when training, got input size [1, 768,1
阿新 • • 發佈:2018-12-28
Traceback (most recent call last):
File "train_ammeter_twoclass.py", line 189, in <module>
train(epoch)
File "train_ammeter_twoclass.py", line 133, in train
outputs = net(inputs)
File "/home/iot/miniconda2/envs/pytorch3/lib/python3.6/site-packages/torch/nn/modules/module.py", line 477, in __call__
result = self.forward(*input, **kwargs)
File "/home/iot/chenjun/1_program/classifer/src/model.py", line 79, in forward
x = self.net(x) # inception會返回兩個矩陣
File "/home/iot/miniconda2/envs/pytorch3/lib/python3.6/site-packages/torch/nn/modules/module.py", line 477, in __call__
result = self.forward(*input, **kwargs)
File "/home/iot/miniconda2/envs/pytorch3/lib/python3.6/site-packages/torchvision/models/inception.py", line 109, in forward
aux = self.AuxLogits(x)
File "/home/iot/miniconda2/envs/pytorch3/lib/python3.6/site-packages/torch/nn/modules/module.py", line 477, in __call__
result = self. forward(*input, **kwargs)
File "/home/iot/miniconda2/envs/pytorch3/lib/python3.6/site-packages/torchvision/models/inception.py", line 308, in forward
x = self.conv1(x)
File "/home/iot/miniconda2/envs/pytorch3/lib/python3.6/site-packages/torch/nn/modules/module.py", line 477, in __call__
result = self.forward(*input, **kwargs)
File "/home/iot/miniconda2/envs/pytorch3/lib/python3.6/site-packages/torchvision/models/inception.py", line 326, in forward
x = self.bn(x)
File "/home/iot/miniconda2/envs/pytorch3/lib/python3.6/site-packages/torch/nn/modules/module.py", line 477, in __call__
result = self.forward(*input, **kwargs)
File "/home/iot/miniconda2/envs/pytorch3/lib/python3.6/site-packages/torch/nn/modules/batchnorm.py", line 66, in forward
exponential_average_factor, self.eps)
File "/home/iot/miniconda2/envs/pytorch3/lib/python3.6/site-packages/torch/nn/functional.py", line 1251, in batch_norm
raise ValueError('Expected more than 1 value per channel when training, got input size {}'.format(size))
ValueError: Expected more than 1 value per channel when training, got input size [1, 768, 1, 1]
問題分析: 模型中用了batchnomolization,訓練中用batch訓練的時候,應該是有單數,比如dataset的總樣本數為17,你的batch_size為8,就會報這樣的錯誤。
解決方案: 從dataset中刪掉一個sample。