堆和棧的區別(非常經典的文章)
一、預備知識—程式的記憶體分配
一個由C/C++編譯的程式佔用的記憶體分為以下幾個部分
1、棧區(stack)— 由編譯器自動分配釋放 ,存放函式的引數值,區域性變數的值等。其
操作方式類似於資料結構中的棧。
2、堆區(heap) — 一般由程式設計師分配釋放, 若程式設計師不釋放,程式結束時可能由OS回
收 。注意它與資料結構中的堆是兩回事,分配方式倒是類似於連結串列,呵呵。
3、全域性區(靜態區)(static)—,全域性變數和靜態變數的儲存是放在一塊的,初始化的
全域性變數和靜態變數在一塊區域, 未初始化的全域性變數和未初始化的靜態變數在相鄰的另
一塊區域。 - 程式結束後由系統釋放。
4、文字常量區 —常量字串就是放在這裡的。 程式結束後由系統釋放
5、程式程式碼區—存放函式體的二進位制程式碼。
BSS段:BSS段(bss segment)通常是指用來存放程式中未初始化的全域性變數的一塊記憶體區域。BSS是英文Block Started by Symbol的簡稱。BSS段屬於靜態記憶體分配。
data段:資料段(data segment)通常是指用來存放程式中已初始化的全域性變數的一塊記憶體區域。資料段屬於靜態記憶體分配。
程式碼段:程式碼段(code segment/text segment)通常是指用來存放程式執行程式碼的一塊記憶體區域。這部分割槽域的大小在程式執行前就已經確定,並且記憶體區域通常屬於只讀, 某些架構也允許程式碼段為可寫,即允許修改程式。在程式碼段中,也有可能包含一些只讀的常數變數,例如字串常量等。
堆(heap):堆是用於存放程序執行中被動態分配的記憶體段,它的大小並不固定,可動態擴張或縮減。當程序呼叫malloc等函式分配記憶體時,新分配的記憶體就被動態新增到堆上(堆被擴張);當利用free等函式釋放記憶體時,被釋放的記憶體從堆中被剔除(堆被縮減)
棧(stack):棧又稱堆疊, 是使用者存放程式臨時建立的區域性變數,也就是說我們函式括弧“{}”中定義的變數(但不包括static宣告的變數,static意味著在資料段中存放變數)。除此以外,在函式被呼叫時,其引數也會被壓入發起呼叫的程序棧中,並且待到呼叫結束後,函式的返回值也會被存放回棧中。由於棧的先進先出特點,所以棧特別方便用來儲存/恢復呼叫現場。從這個意義上講,我們可以把堆疊看成一個寄存、交換臨時資料的記憶體區。
PS: 全域性的未初始化變數存在於.bss段中,具體體現為一個佔位符;全域性的已初始化變數存於.data段中;而函式內的自動變數都在棧上分配空間。.bss是不佔用.exe檔案空間的,其內容由作業系統初始化(清零);而.data卻需要佔用,其內容由程式初始化,因此造成了上述情況。 bss段(未手動初始化的資料)並不給該段的資料分配空間,只是記錄資料所需空間的大小。 data(已手動初始化的資料)段則為資料分配空間,資料儲存在目標檔案中。 資料段包含經過初始化的全域性變數以及它們的值。BSS段的大小從可執行檔案中得到 ,然後連結器得到這個大小的記憶體塊,緊跟在資料段後面。當這個記憶體區進入程式的地址空間後全部清零。包含資料段和BSS段的整個區段此時通常稱為資料區。
二、例子程式
這是一個前輩寫的,非常詳細
//main.cpp
int a = 0; 全域性初始化區
char *p1; 全域性未初始化區
main()
{
int b; 棧
char s[] = "abc"; 棧
char *p2; 棧
char *p3 = "123456"; 123456/0在常量區,p3在棧上。
static int c =0; 全域性(靜態)初始化區
p1 = (char *)malloc(10);
p2 = (char *)malloc(20);
分配得來得10和20位元組的區域就在堆區。
strcpy(p1, "123456"); 123456/0放在常量區,編譯器可能會將它與p3所指向的"123456"
優化成一個地方。
}
二、堆和棧的理論知識
2.1申請方式
stack:
由系統自動分配。 例如,宣告在函式中一個區域性變數 int b; 系統自動在棧中為b開闢空
間
heap:
需要程式設計師自己申請,並指明大小,在c中malloc函式
如p1 = (char *)malloc(10);
在C++中用new運算子
如p2 = new char[10];
但是注意p1、p2本身是在棧中的。
2.2
申請後系統的響應
棧:只要棧的剩餘空間大於所申請空間,系統將為程式提供記憶體,否則將報異常提示棧溢
出。
堆:首先應該知道作業系統有一個記錄空閒記憶體地址的連結串列,當系統收到程式的申請時,
會遍歷該連結串列,尋找第一個空間大於所申請空間的堆結點,然後將該結點從空閒結點連結串列
中刪除,並將該結點的空間分配給程式,另外,對於大多數系統,會在這塊記憶體空間中的
首地址處記錄本次分配的大小,這樣,程式碼中的delete語句才能正確的釋放本記憶體空間。
另外,由於找到的堆結點的大小不一定正好等於申請的大小,系統會自動的將多餘的那部
分重新放入空閒連結串列中。
2.3申請大小的限制
棧:在Windows下,棧是向低地址擴充套件的資料結構,是一塊連續的記憶體的區域。這句話的意
思是棧頂的地址和棧的最大容量是系統預先規定好的,在WINDOWS下,棧的大小是2M(也有
的說是1M,總之是一個編譯時就確定的常數),如果申請的空間超過棧的剩餘空間時,將
提示overflow。因此,能從棧獲得的空間較小。
堆:堆是向高地址擴充套件的資料結構,是不連續的記憶體區域。這是由於系統是用連結串列來儲存
的空閒記憶體地址的,自然是不連續的,而連結串列的遍歷方向是由低地址向高地址。堆的大小
受限於計算機系統中有效的虛擬記憶體。由此可見,堆獲得的空間比較靈活,也比較大。
2.4申請效率的比較:
棧由系統自動分配,速度較快。但程式設計師是無法控制的。
堆是由new分配的記憶體,一般速度比較慢,而且容易產生記憶體碎片,不過用起來最方便.
另外,在WINDOWS下,最好的方式是用VirtualAlloc分配記憶體,他不是在堆,也不是在棧是
直接在程序的地址空間中保留一塊記憶體,雖然用起來最不方便。但是速度快,也最靈活。
2.5堆和棧中的儲存內容
棧: 在函式呼叫時,第一個進棧的是主函式中後的下一條指令(函式呼叫語句的下一條可
執行語句)的地址,然後是函式的各個引數,在大多數的C編譯器中,引數是由右往左入棧
的,然後是函式中的區域性變數。注意靜態變數是不入棧的。
當本次函式呼叫結束後,區域性變數先出棧,然後是引數,最後棧頂指標指向最開始存的地
址,也就是主函式中的下一條指令,程式由該點繼續執行。
堆:一般是在堆的頭部用一個位元組存放堆的大小。堆中的具體內容由程式設計師安排。
2.6存取效率的比較
char s1[] = "aaaaaaaaaaaaaaa";
char *s2 = "bbbbbbbbbbbbbbbbb";
aaaaaaaaaaa是在執行時刻賦值的;
而bbbbbbbbbbb是在編譯時就確定的;
但是,在以後的存取中,在棧上的陣列比指標所指向的字串(例如堆)快。
比如:
#include
void main()
{
char a = 1;
char c[] = "1234567890";
char *p ="1234567890";
a = c[1];
a = p[1];
return;
}
對應的彙編程式碼
10: a = c[1];
00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]
0040106A 88 4D FC mov byte ptr [ebp-4],cl
11: a = p[1];
0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]
00401070 8A 42 01 mov al,byte ptr [edx+1]
00401073 88 45 FC mov byte ptr [ebp-4],al
第一種在讀取時直接就把字串中的元素讀到暫存器cl中,而第二種則要先把指標值讀到
edx中,再根據edx讀取字元,顯然慢了。
2.7小結:
堆和棧的區別可以用如下的比喻來看出:
使用棧就象我們去飯館裡吃飯,只管點菜(發出申請)、付錢、和吃(使用),吃飽了就
走,不必理會切菜、洗菜等準備工作和洗碗、刷鍋等掃尾工作,他的好處是快捷,但是自
由度小。
使用堆就象是自己動手做喜歡吃的菜餚,比較麻煩,但是比較符合自己的口味,而且自由
度大。