1. 程式人生 > >Tensorflow— 使用inception-v3做各種影象的識別

Tensorflow— 使用inception-v3做各種影象的識別

程式碼:

import tensorflow as tf
import os
import numpy as np
import re
from PIL import Image
import matplotlib.pyplot as plt

程式碼:

class NodeLookup(object):
    def __init__(self):  
        label_lookup_path = 'inception_model/imagenet_2012_challenge_label_map_proto.pbtxt'   
        uid_lookup_path = 'inception_model/imagenet_synset_to_human_label_map.txt'
        self.node_lookup = self.load(label_lookup_path, uid_lookup_path)

    def load(self, label_lookup_path, uid_lookup_path):
        # 載入分類字串n********對應分類名稱的檔案
        proto_as_ascii_lines = tf.gfile.GFile(uid_lookup_path).readlines()
        uid_to_human = {}
        #一行一行讀取資料
        for line in proto_as_ascii_lines :
            #去掉換行符
            line=line.strip('\n')
            #按照'\t'分割
            parsed_items = line.split('\t')
            #獲取分類編號
            uid = parsed_items[0]
            #獲取分類名稱
            human_string = parsed_items[1]
            #儲存編號字串n********與分類名稱對映關係
            uid_to_human[uid] = human_string

        # 載入分類字串n********對應分類編號1-1000的檔案
        proto_as_ascii = tf.gfile.GFile(label_lookup_path).readlines()
        node_id_to_uid = {}
        for line in proto_as_ascii:
            if line.startswith('  target_class:'):
                #獲取分類編號1-1000
                target_class = int(line.split(': ')[1])
            if line.startswith('  target_class_string:'):
                #獲取編號字串n********
                target_class_string = line.split(': ')[1]
                #儲存分類編號1-1000與編號字串n********對映關係
                node_id_to_uid[target_class] = target_class_string[1:-2]

        #建立分類編號1-1000對應分類名稱的對映關係
        node_id_to_name = {}
        for key, val in node_id_to_uid.items():
            #獲取分類名稱
            name = uid_to_human[val]
            #建立分類編號1-1000到分類名稱的對映關係
            node_id_to_name[key] = name
        return node_id_to_name

    #傳入分類編號1-1000返回分類名稱
    def id_to_string(self, node_id):
        if node_id not in self.node_lookup:
            return ''
        return self.node_lookup[node_id]


#建立一個圖來存放google訓練好的模型
with tf.gfile.FastGFile('inception_model/classify_image_graph_def.pb', 'rb') as f:
    graph_def = tf.GraphDef()
    graph_def.ParseFromString(f.read())
    tf.import_graph_def(graph_def, name='')


with tf.Session() as sess:
    softmax_tensor = sess.graph.get_tensor_by_name('softmax:0')
    #遍歷目錄
    for root,dirs,files in os.walk('image/'):
        for file in files:
            #載入圖片
            image_data = tf.gfile.FastGFile(os.path.join(root,file), 'rb').read()
            predictions = sess.run(softmax_tensor,{'DecodeJpeg/contents:0': image_data})#圖片格式是jpg格式
            predictions = np.squeeze(predictions)#把結果轉為1維資料

            #列印圖片路徑及名稱
            image_path = os.path.join(root,file)
            print(image_path)
            #顯示圖片
            img=Image.open(image_path)
            plt.imshow(img)
            plt.axis('off')
            plt.show()

            #排序
            top_k = predictions.argsort()[-5:][::-1]
            node_lookup = NodeLookup()
            for node_id in top_k:     
                #獲取分類名稱
                human_string = node_lookup.id_to_string(node_id)
                #獲取該分類的置信度
                score = predictions[node_id]
                print('%s (score = %.5f)' % (human_string, score))
            print()

執行結果: