常用的機器學習&資料探勘翻譯(轉)
Basis(基礎):
MSE(Mean Square Error 均方誤差),
LMS(LeastMean Square 最小均方),
LSM(Least Square Methods 最小二乘法),
MLE(MaximumLikelihood Estimation最大似然估計),
QP(Quadratic Programming 二次規劃),
CP(Conditional Probability條件概率),
JP(Joint Probability 聯合概率),
MP(Marginal Probability邊緣概率),
Bayesian Formula(貝葉斯公式),
L1 /L2Regularization(L1/L2正則,以及更多的,現在比較火的L2.5正則等),
GD(GradientDescent 梯度下降),
SGD(Stochastic Gradient Descent 隨機梯度下降),
Eigenvalue(特徵值),
Eigenvector(特徵向量),
QR-decomposition(QR分解),
Quantile (分位數),
Covariance(協方差矩陣)。
Common Distribution(常見分佈):
Discrete Distribution(離散型分佈):
BernoulliDistribution/Binomial(貝努利分佈/二項分佈),
Negative BinomialDistribution(負二項分佈),
MultinomialDistribution(多項式分佈),
Geometric Distribution(幾何分佈),
HypergeometricDistribution(超幾何分佈),
Poisson Distribution (泊松分佈)。
Continuous Distribution (連續型分佈):
UniformDistribution(均勻分佈),
Normal Distribution /Guassian Distribution(正態分佈/高斯分佈),
ExponentialDistribution(指數分佈),
Lognormal Distribution(對數正態分佈),
GammaDistribution(Gamma分佈),
Beta Distribution(Beta分佈),
Dirichlet Distribution(狄利克雷分佈),
Rayleigh Distribution(瑞利分佈),
Cauchy Distribution(柯西分佈),
Weibull Distribution (韋伯分佈)。
Three Sampling Distribution(三大抽樣分佈):
Chi-squareDistribution(卡方分佈),
t-distribution(t-distribution),
F-distribution(F-分佈)。
Data Pre-processing(資料預處理):
Missing Value Imputation(缺失值填充),
Discretization(離散化),Mapping(對映),
Normalization(歸一化/標準化)。
Sampling(取樣):
Simple Random Sampling(簡單隨機取樣),
OfflineSampling(離線等可能K取樣),
Online Sampling(線上等可能K取樣),
Ratio-based Sampling(等比例隨機取樣),
Acceptance-RejectionSampling(接受-拒絕取樣),
Importance Sampling(重要性取樣),
MCMC(MarkovChain Monte Carlo 馬爾科夫蒙特卡羅取樣演算法:Metropolis-Hasting& Gibbs)。
Clustering(聚類):
K-Means,
K-Mediods,
二分K-Means,
FK-Means,
Canopy,
Spectral-KMeans(譜聚類),
GMM-EM(混合高斯模型-期望最大化演算法解決),
K-Pototypes,CLARANS(基於劃分),
BIRCH(基於層次),
CURE(基於層次),
DBSCAN(基於密度),
CLIQUE(基於密度和基於網格)。
Classification&Regression(分類&迴歸):
LR(Linear Regression 線性迴歸),
LR(LogisticRegression邏輯迴歸),
SR(Softmax Regression 多分類邏輯迴歸),
GLM(GeneralizedLinear Model 廣義線性模型),
RR(Ridge Regression 嶺迴歸/L2正則最小二乘迴歸),
LASSO(Least Absolute Shrinkage andSelectionator Operator L1正則最小二乘迴歸),
RF(隨機森林),
DT(DecisionTree決策樹),
GBDT(Gradient BoostingDecision Tree 梯度下降決策樹),
CART(ClassificationAnd Regression Tree 分類迴歸樹),
KNN(K-Nearest Neighbor K近鄰),
SVM(Support VectorMachine),
KF(KernelFunction 核函式PolynomialKernel Function 多項式核函、
Guassian KernelFunction 高斯核函式/Radial BasisFunction RBF徑向基函式、
String KernelFunction 字串核函式)、
NB(Naive Bayes 樸素貝葉斯),BN(Bayesian Network/Bayesian Belief Network/ Belief Network 貝葉斯網路/貝葉斯信度網路/信念網路),
LDA(Linear Discriminant Analysis/FisherLinear Discriminant 線性判別分析/Fisher線性判別),
EL(Ensemble Learning整合學習Boosting,Bagging,Stacking),
AdaBoost(Adaptive Boosting 自適應增強),
MEM(MaximumEntropy Model最大熵模型)。
Effectiveness Evaluation(分類效果評估):
Confusion Matrix(混淆矩陣),
Precision(精確度),Recall(召回率),
Accuracy(準確率),F-score(F得分),
ROC Curve(ROC曲線),AUC(AUC面積),
LiftCurve(Lift曲線) ,KS Curve(KS曲線)。
PGM(Probabilistic Graphical Models概率圖模型):
BN(Bayesian Network/Bayesian Belief Network/ BeliefNetwork 貝葉斯網路/貝葉斯信度網路/信念網路),
MC(Markov Chain 馬爾科夫鏈),
HMM(HiddenMarkov Model 馬爾科夫模型),
MEMM(Maximum Entropy Markov Model 最大熵馬爾科夫模型),
CRF(ConditionalRandom Field 條件隨機場),
MRF(MarkovRandom Field 馬爾科夫隨機場)。
NN(Neural Network神經網路):
ANN(Artificial Neural Network 人工神經網路),
BP(Error BackPropagation 誤差反向傳播)。
Deep Learning(深度學習):
Auto-encoder(自動編碼器),
SAE(Stacked Auto-encoders堆疊自動編碼器,
Sparse Auto-encoders稀疏自動編碼器、
Denoising Auto-encoders去噪自動編碼器、
Contractive Auto-encoders 收縮自動編碼器),
RBM(RestrictedBoltzmann Machine 受限玻爾茲曼機),
DBN(Deep Belief Network 深度信念網路),
CNN(ConvolutionalNeural Network 卷積神經網路),
Word2Vec(詞向量學習模型)。
DimensionalityReduction(降維):
LDA LinearDiscriminant Analysis/Fisher Linear Discriminant 線性判別分析/Fisher線性判別,
PCA(Principal Component Analysis 主成分分析),
ICA(IndependentComponent Analysis 獨立成分分析),
SVD(Singular Value Decomposition 奇異值分解),
FA(FactorAnalysis 因子分析法)。
Text Mining(文字挖掘):
VSM(Vector Space Model向量空間模型),
Word2Vec(詞向量學習模型),
TF(Term Frequency詞頻),
TF-IDF(Term Frequency-Inverse DocumentFrequency 詞頻-逆向文件頻率),
MI(MutualInformation 互資訊),
ECE(Expected Cross Entropy 期望交叉熵),
QEMI(二次資訊熵),
IG(InformationGain 資訊增益),
IGR(Information Gain Ratio 資訊增益率),
Gini(基尼係數),
x2 Statistic(x2統計量),
TEW(TextEvidence Weight文字證據權),
OR(Odds Ratio 優勢率),
N-Gram Model,
LSA(Latent Semantic Analysis 潛在語義分析),
PLSA(ProbabilisticLatent Semantic Analysis 基於概率的潛在語義分析),
LDA(Latent DirichletAllocation 潛在狄利克雷模型)。
Association Mining(關聯挖掘):
Apriori,
FP-growth(Frequency Pattern Tree Growth 頻繁模式樹生長演算法),
AprioriAll,
Spade。
Recommendation Engine(推薦引擎):
DBR(Demographic-based Recommendation 基於人口統計學的推薦),
CBR(Context-basedRecommendation 基於內容的推薦),
CF(Collaborative Filtering協同過濾),
UCF(User-basedCollaborative Filtering Recommendation 基於使用者的協同過濾推薦),
ICF(Item-basedCollaborative Filtering Recommendation 基於專案的協同過濾推薦)。
Similarity Measure&Distance Measure(相似性與距離度量):
Euclidean Distance(歐式距離),
ManhattanDistance(曼哈頓距離),
Chebyshev Distance(切比雪夫距離),
MinkowskiDistance(閔可夫斯基距離),
Standardized Euclidean Distance(標準化歐氏距離),
MahalanobisDistance(馬氏距離),
Cos(Cosine 餘弦),
HammingDistance/Edit Distance(漢明距離/編輯距離),
JaccardDistance(傑卡德距離),
Correlation Coefficient Distance(相關係數距離),
InformationEntropy(資訊熵),
KL(Kullback-Leibler Divergence KL散度/Relative Entropy 相對熵)。
Optimization(最優化):
Non-constrainedOptimization(無約束優化):
Cyclic VariableMethods(變數輪換法),
Pattern Search Methods(模式搜尋法),
VariableSimplex Methods(可變單純形法),
Gradient Descent Methods(梯度下降法),
Newton Methods(牛頓法),
Quasi-NewtonMethods(擬牛頓法),
Conjugate Gradient Methods(共軛梯度法)。
ConstrainedOptimization(有約束優化):
Approximation Programming Methods(近似規劃法),
FeasibleDirection Methods(可行方向法),
Penalty Function Methods(罰函式法),
Multiplier Methods(乘子法)。
Heuristic Algorithm(啟發式演算法),
SA(SimulatedAnnealing,
模擬退火演算法),
GA(genetic algorithm遺傳演算法)。
Feature Selection(特徵選擇演算法):
Mutual Information(互資訊),
DocumentFrequence(文件頻率),
Information Gain(資訊增益),
Chi-squared Test(卡方檢驗),
Gini(基尼係數)。
Outlier Detection(異常點檢測演算法):
Statistic-based(基於統計),
Distance-based(基於距離),
Density-based(基於密度),
Clustering-based(基於聚類)。
Learning to Rank(基於學習的排序):
Pointwise:McRank;
Pairwise:RankingSVM,RankNet,Frank,RankBoost;
Listwise:AdaRank,SoftRank,LamdaMART。Basis(基礎):
MSE(Mean Square Error 均方誤差),
LMS(LeastMean Square 最小均方),
LSM(Least Square Methods 最小二乘法),
MLE(MaximumLikelihood Estimation最大似然估計),
QP(Quadratic Programming 二次規劃),
CP(Conditional Probability條件概率),
JP(Joint Probability 聯合概率),
MP(Marginal Probability邊緣概率),
Bayesian Formula(貝葉斯公式),
L1 /L2Regularization(L1/L2正則,
以及更多的,現在比較火的L2.5正則等),
GD(GradientDescent 梯度下降),
SGD(Stochastic Gradient Descent 隨機梯度下降),
Eigenvalue(特徵值),
Eigenvector(特徵向量),
QR-decomposition(QR分解),
Quantile (分位數),
Covariance(協方差矩陣)。
Common Distribution(常見分佈):
Discrete Distribution(離散型分佈):
BernoulliDistribution/Binomial(貝努利分佈/二項分佈),
Negative BinomialDistribution(負二項分佈),
MultinomialDistribution(多項式分佈),
Geometric Distribution(幾何分佈),
HypergeometricDistribution(超幾何分佈),
Poisson Distribution (泊松分佈)。
Continuous Distribution (連續型分佈):
UniformDistribution(均勻分佈),
Normal Distribution /Guassian Distribution(正態分佈/高斯分佈),
ExponentialDistribution(指數分佈),
Lognormal Distribution(對數正態分佈),
GammaDistribution(Gamma分佈),
Beta Distribution(Beta分佈),
Dirichlet Distribution(狄利克雷分佈),
Rayleigh Distribution(瑞利分佈),
Cauchy Distribution(柯西分佈),
Weibull Distribution (韋伯分佈)。
Three Sampling Distribution(三大抽樣分佈):
Chi-squareDistribution(卡方分佈),
t-distribution(t-distribution),
F-distribution(F-分佈)。
Data Pre-processing(資料預處理):
Missing Value Imputation(缺失值填充),
Discretization(離散化),Mapping(對映),
Normalization(歸一化/標準化)。
Sampling(取樣):
Simple Random Sampling(簡單隨機取樣),
OfflineSampling(離線等可能K取樣),
Online Sampling(線上等可能K取樣),
Ratio-based Sampling(等比例隨機取樣),
Acceptance-RejectionSampling(接受-拒絕取樣),
Importance Sampling(重要性取樣),
MCMC(MarkovChain Monte Carlo 馬爾科夫蒙特卡羅取樣演算法:Metropolis-Hasting& Gibbs)。
Clustering(聚類):
K-Means,
K-Mediods,
二分K-Means,
FK-Means,
Canopy,
Spectral-KMeans(譜聚類),
GMM-EM(混合高斯模型-期望最大化演算法解決),
K-Pototypes,CLARANS(基於劃分),
BIRCH(基於層次),
CURE(基於層次),
DBSCAN(基於密度),
CLIQUE(基於密度和基於網格)。
Classification&Regression(分類&迴歸):
LR(Linear Regression 線性迴歸),
LR(LogisticRegression邏輯迴歸),
SR(Softmax Regression 多分類邏輯迴歸),
GLM(GeneralizedLinear Model 廣義線性模型),
RR(Ridge Regression 嶺迴歸/L2正則最小二乘迴歸),
LASSO(Least Absolute Shrinkage andSelectionator Operator L1正則最小二乘迴歸),
RF(隨機森林),
DT(DecisionTree決策樹),
GBDT(Gradient BoostingDecision Tree 梯度下降決策樹),
CART(ClassificationAnd Regression Tree 分類迴歸樹),
KNN(K-Nearest Neighbor K近鄰),
SVM(Support VectorMachine),
KF(KernelFunction 核函式PolynomialKernel Function 多項式核函、
Guassian KernelFunction 高斯核函式/Radial BasisFunction RBF徑向基函式、
String KernelFunction 字串核函式)、
NB(Naive Bayes 樸素貝葉斯),BN(Bayesian Network/Bayesian Belief Network/ Belief Network 貝葉斯網路/貝葉斯信度網路/信念網路),
LDA(Linear Discriminant Analysis/FisherLinear Discriminant 線性判別分析/Fisher線性判別),
EL(Ensemble Learning整合學習Boosting,Bagging,Stacking),
AdaBoost(Adaptive Boosting 自適應增強),
MEM(MaximumEntropy Model最大熵模型)。
Effectiveness Evaluation(分類效果評估):
Confusion Matrix(混淆矩陣),
Precision(精確度),Recall(召回率),
Accuracy(準確率),F-score(F得分),
ROC Curve(ROC曲線),AUC(AUC面積),
LiftCurve(Lift曲線) ,KS Curve(KS曲線)。
PGM(Probabilistic Graphical Models概率圖模型):
BN(Bayesian Network/Bayesian Belief Network/ BeliefNetwork 貝葉斯網路/貝葉斯信度網路/信念網路),
MC(Markov Chain 馬爾科夫鏈),
HMM(HiddenMarkov Model 馬爾科夫模型),
MEMM(Maximum Entropy Markov Model 最大熵馬爾科夫模型),
CRF(ConditionalRandom Field 條件隨機場),
MRF(MarkovRandom Field 馬爾科夫隨機場)。
NN(Neural Network神經網路):
ANN(Artificial Neural Network 人工神經網路),
BP(Error BackPropagation 誤差反向傳播)。
Deep Learning(深度學習):
Auto-encoder(自動編碼器),
SAE(Stacked Auto-encoders堆疊自動編碼器,
Sparse Auto-encoders稀疏自動編碼器、
Denoising Auto-encoders去噪自動編碼器、
Contractive Auto-encoders 收縮自動編碼器),
RBM(RestrictedBoltzmann Machine 受限玻爾茲曼機),
DBN(Deep Belief Network 深度信念網路),
CNN(ConvolutionalNeural Network 卷積神經網路),
Word2Vec(詞向量學習模型)。
DimensionalityReduction(降維):
LDA LinearDiscriminant Analysis/Fisher Linear Discriminant 線性判別分析/Fisher線性判別,
PCA(Principal Component Analysis 主成分分析),
ICA(IndependentComponent Analysis 獨立成分分析),
SVD(Singular Value Decomposition 奇異值分解),
FA(FactorAnalysis 因子分析法)。
Text Mining(文字挖掘):
VSM(Vector Space Model向量空間模型),
Word2Vec(詞向量學習模型),
TF(Term Frequency詞頻),
TF-IDF(Term Frequency-Inverse DocumentFrequency 詞頻-逆向文件頻率),
MI(MutualInformation 互資訊),
ECE(Expected Cross Entropy 期望交叉熵),
QEMI(二次資訊熵),
IG(InformationGain 資訊增益),
IGR(Information Gain Ratio 資訊增益率),
Gini(基尼係數),
x2 Statistic(x2統計量),
TEW(TextEvidence Weight文字證據權),
OR(Odds Ratio 優勢率),
N-Gram Model,
LSA(Latent Semantic Analysis 潛在語義分析),
PLSA(ProbabilisticLatent Semantic Analysis 基於概率的潛在語義分析),
LDA(Latent DirichletAllocation 潛在狄利克雷模型)。
Association Mining(關聯挖掘):
Apriori,
FP-growth(Frequency Pattern Tree Growth 頻繁模式樹生長演算法),
AprioriAll,
Spade。
Recommendation Engine(推薦引擎):
DBR(Demographic-based Recommendation 基於人口統計學的推薦),
CBR(Context-basedRecommendation 基於內容的推薦),
CF(Collaborative Filtering協同過濾),
UCF(User-basedCollaborative Filtering Recommendation 基於使用者的協同過濾推薦),
ICF(Item-basedCollaborative Filtering Recommendation 基於專案的協同過濾推薦)。
Similarity Measure&Distance Measure(相似性與距離度量):
Euclidean Distance(歐式距離),
ManhattanDistance(曼哈頓距離),
Chebyshev Distance(切比雪夫距離),
MinkowskiDistance(閔可夫斯基距離),
Standardized Euclidean Distance(標準化歐氏距離),
MahalanobisDistance(馬氏距離),
Cos(Cosine 餘弦),
HammingDistance/Edit Distance(漢明距離/編輯距離),
JaccardDistance(傑卡德距離),
Correlation Coefficient Distance(相關係數距離),
InformationEntropy(資訊熵),
KL(Kullback-Leibler Divergence KL散度/Relative Entropy 相對熵)。
Optimization(最優化):
Non-constrainedOptimization(無約束優化):
Cyclic VariableMethods(變數輪換法),
Pattern Search Methods(模式搜尋法),
VariableSimplex Methods(可變單純形法),
Gradient Descent Methods(梯度下降法),
Newton Methods(牛頓法),
Quasi-NewtonMethods(擬牛頓法),
Conjugate Gradient Methods(共軛梯度法)。
ConstrainedOptimization(有約束優化):
Approximation Programming Methods(近似規劃法),
FeasibleDirection Methods(可行方向法),
Penalty Function Methods(罰函式法),
Multiplier Methods(乘子法)。
Heuristic Algorithm(啟發式演算法),
SA(SimulatedAnnealing,
模擬退火演算法),
GA(genetic algorithm遺傳演算法)。
Feature Selection(特徵選擇演算法):
Mutual Information(互資訊),
DocumentFrequence(文件頻率),
Information Gain(資訊增益),
Chi-squared Test(卡方檢驗),
Gini(基尼係數)。
Outlier Detection(異常點檢測演算法):
Statistic-based(基於統計),
Distance-based(基於距離),
Density-based(基於密度),
Clustering-based(基於聚類)。
Learning to Rank(基於學習的排序):
Pointwise:McRank;
Pairwise:RankingSVM,RankNet,Frank,RankBoost;
Listwise:AdaRank,SoftRank,LamdaMART。
Basis(基礎):
MSE(Mean Square Error 均方誤差),
LMS(LeastMean Square 最小均方),
LSM(Least Square Methods 最小二乘法),
MLE(MaximumLikelihood Estimation最大似然估計),
QP(Quadratic Programming 二次規劃),
CP(Conditional Probability條件概率),
JP(Joint Probability 聯合概率),
MP(Marginal Probability邊緣概率),
Bayesian Formula(貝葉斯公式),
L1 /L2Regularization(L1/L2正則,
以及更多的,現在比較火的L2.5正則等),
GD(GradientDescent 梯度下降),
SGD(Stochastic Gradient Descent 隨機梯度下降),
Eigenvalue(特徵值),
Eigenvector(特徵向量),
QR-decomposition(QR分解),
Quantile (分位數),
Covariance(協方差矩陣)。
Common Distribution(常見分佈):
Discrete Distribution(離散型分佈):
BernoulliDistribution/Binomial(貝努利分佈/二項分佈),
Negative BinomialDistribution(負二項分佈),
MultinomialDistribution(多項式分佈),
Geometric Distribution(幾何分佈),
HypergeometricDistribution(超幾何分佈),
Poisson Distribution (泊松分佈)。
Continuous Distribution (連續型分佈):
UniformDistribution(均勻分佈),
Normal Distribution /Guassian Distribution(正態分佈/高斯分佈),
ExponentialDistribution(指數分佈),
Lognormal Distribution(對數正態分佈),
GammaDistribution(Gamma分佈),
Beta Distribution(Beta分佈),
Dirichlet Distribution(狄利克雷分佈),
Rayleigh Distribution(瑞利分佈),
Cauchy Distribution(柯西分佈),
Weibull Distribution (韋伯分佈)。
Three Sampling Distribution(三大抽樣分佈):
Chi-squareDistribution(卡方分佈),
t-distribution(t-distribution),
F-distribution(F-分佈)。
Data Pre-processing(資料預處理):
Missing Value Imputation(缺失值填充),
Discretization(離散化),Mapping(對映),
Normalization(歸一化/標準化)。
Sampling(取樣):
Simple Random Sampling(簡單隨機取樣),
OfflineSampling(離線等可能K取樣),
Online Sampling(線上等可能K取樣),
Ratio-based Sampling(等比例隨機取樣),
Acceptance-RejectionSampling(接受-拒絕取樣),
Importance Sampling(重要性取樣),
MCMC(MarkovChain Monte Carlo 馬爾科夫蒙特卡羅取樣演算法:Metropolis-Hasting& Gibbs)。
Clustering(聚類):
K-Means,
K-Mediods,
二分K-Means,
FK-Means,
Canopy,
Spectral-KMeans(譜聚類),
GMM-EM(混合高斯模型-期望最大化演算法解決),
K-Pototypes,CLARANS(基於劃分),
BIRCH(基於層次),
CURE(基於層次),
DBSCAN(基於密度),
CLIQUE(基於密度和基於網格)。
Classification&Regression(分類&迴歸):
LR(Linear Regression 線性迴歸),
LR(LogisticRegression邏輯迴歸),
SR(Softmax Regression 多分類邏輯迴歸),
GLM(GeneralizedLinear Model 廣義線性模型),
RR(Ridge Regression 嶺迴歸/L2正則最小二乘迴歸),
LASSO(Least Absolute Shrinkage andSelectionator Operator L1正則最小二乘迴歸),
RF(隨機森林),
DT(DecisionTree決策樹),
GBDT(Gradient BoostingDecision Tree 梯度下降決策樹),
CART(ClassificationAnd Regression Tree 分類迴歸樹),
KNN(K-Nearest Neighbor K近鄰),
SVM(Support VectorMachine),
KF(KernelFunction 核函式PolynomialKernel Function 多項式核函、
Guassian KernelFunction 高斯核函式/Radial BasisFunction RBF徑向基函式、
String KernelFunction 字串核函式)、
NB(Naive Bayes 樸素貝葉斯),BN(Bayesian Network/Bayesian Belief Network/ Belief Network 貝葉斯網路/貝葉斯信度網路/信念網路),
LDA(Linear Discriminant Analysis/FisherLinear Discriminant 線性判別分析/Fisher線性判別),
EL(Ensemble Learning整合學習Boosting,Bagging,Stacking),
AdaBoost(Adaptive Boosting 自適應增強),
MEM(MaximumEntropy Model最大熵模型)。
Effectiveness Evaluation(分類效果評估):
Confusion Matrix(混淆矩陣),
Precision(精確度),Recall(召回率),
Accuracy(準確率),F-score(F得分),
ROC Curve(ROC曲線),AUC(AUC面積),
LiftCurve(Lift曲線) ,KS Curve(KS曲線)。
PGM(Probabilistic Graphical Models概率圖模型):
BN(Bayesian Network/Bayesian Belief Network/ BeliefNetwork 貝葉斯網路/貝葉斯信度網路/信念網路),
MC(Markov Chain 馬爾科夫鏈),
HMM(HiddenMarkov Model 馬爾科夫模型),
MEMM(Maximum Entropy Markov Model 最大熵馬爾科夫模型),
CRF(ConditionalRandom Field 條件隨機場),
MRF(MarkovRandom Field 馬爾科夫隨機場)。
NN(Neural Network神經網路):
ANN(Artificial Neural Network 人工神經網路),
BP(Error BackPropagation 誤差反向傳播)。
Deep Learning(深度學習):
Auto-encoder(自動編碼器),
SAE(Stacked Auto-encoders堆疊自動編碼器,
Sparse Auto-encoders稀疏自動編碼器、
Denoising Auto-encoders去噪自動編碼器、
Contractive Auto-encoders 收縮自動編碼器),
RBM(RestrictedBoltzmann Machine 受限玻爾茲曼機),
DBN(Deep Belief Network 深度信念網路),
CNN(ConvolutionalNeural Network 卷積神經網路),
Word2Vec(詞向量學習模型)。
DimensionalityReduction(降維):
LDA LinearDiscriminant Analysis/Fisher Linear Discriminant 線性判別分析/Fisher線性判別,
PCA(Principal Component Analysis 主成分分析),
ICA(IndependentComponent Analysis 獨立成分分析),
SVD(Singular Value Decomposition 奇異值分解),
FA(FactorAnalysis 因子分析法)。
Text Mining(文字挖掘):
VSM(Vector Space Model向量空間模型),
Word2Vec(詞向量學習模型),
TF(Term Frequency詞頻),
TF-IDF(Term Frequency-Inverse DocumentFrequency 詞頻-逆向文件頻率),
MI(MutualInformation 互資訊),
ECE(Expected Cross Entropy 期望交叉熵),
QEMI(二次資訊熵),
IG(InformationGain 資訊增益),
IGR(Information Gain Ratio 資訊增益率),
Gini(基尼係數),
x2 Statistic(x2統計量),
TEW(TextEvidence Weight文字證據權),
OR(Odds Ratio 優勢率),
N-Gram Model,
LSA(Latent Semantic Analysis 潛在語義分析),
PLSA(ProbabilisticLatent Semantic Analysis 基於概率的潛在語義分析),
LDA(Latent DirichletAllocation 潛在狄利克雷模型)。
Association Mining(關聯挖掘):
Apriori,
FP-growth(Frequency Pattern Tree Growth 頻繁模式樹生長演算法),
AprioriAll,
Spade。
Recommendation Engine(推薦引擎):
DBR(Demographic-based Recommendation 基於人口統計學的推薦),
CBR(Context-basedRecommendation 基於內容的推薦),
CF(Collaborative Filtering協同過濾),
UCF(User-basedCollaborative Filtering Recommendation 基於使用者的協同過濾推薦),
ICF(Item-basedCollaborative Filtering Recommendation 基於專案的協同過濾推薦)。
Similarity Measure&Distance Measure(相似性與距離度量):
Euclidean Distance(歐式距離),
ManhattanDistance(曼哈頓距離),
Chebyshev Distance(切比雪夫距離),
MinkowskiDistance(閔可夫斯基距離),
Standardized Euclidean Distance(標準化歐氏距離),
MahalanobisDistance(馬氏距離),
Cos(Cosine 餘弦),
HammingDistance/Edit Distance(漢明距離/編輯距離),
JaccardDistance(傑卡德距離),
Correlation Coefficient Distance(相關係數距離),
InformationEntropy(資訊熵),
KL(Kullback-Leibler Divergence KL散度/Relative Entropy 相對熵)。
Optimization(最優化):
Non-constrainedOptimization(無約束優化):
Cyclic VariableMethods(變數輪換法),
Pattern Search Methods(模式搜尋法),
VariableSimplex Methods(可變單純形法),
Gradient Descent Methods(梯度下降法),
Newton Methods(牛頓法),
Quasi-NewtonMethods(擬牛頓法),
Conjugate Gradient Methods(共軛梯度法)。
ConstrainedOptimization(有約束優化):
Approximation Programming Methods(近似規劃法),
FeasibleDirection Methods(可行方向法),
Penalty Function Methods(罰函式法),
Multiplier Methods(乘子法)。
Heuristic Algorithm(啟發式演算法),
SA(SimulatedAnnealing,
模擬退火演算法),
GA(genetic algorithm遺傳演算法)。
Feature Selection(特徵選擇演算法):
Mutual Information(互資訊),
DocumentFrequence(文件頻率),
Information Gain(資訊增益),
Chi-squared Test(卡方檢驗),
Gini(基尼係數)。
Outlier Detection(異常點檢測演算法):
Statistic-based(基於統計),
Distance-based(基於距離),
Density-based(基於密度),
Clustering-based(基於聚類)。
Learning to Rank(基於學習的排序):
Pointwise:McRank;
Pairwise:RankingSVM,RankNet,Frank,RankBoost;
Listwise:AdaRank,SoftRank,LamdaMART。
Tool(工具):
MPI,Hadoop生態圈,Spark,BSP,Weka,Mahout,Scikit-learn,PyBrain…
以及一些具體的業務場景與case等。