hdoj1711(KMP模板題)Number Sequence
阿新 • • 發佈:2018-12-30
Problem Description
Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one
K exist, output the smallest one.
Input The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000].
Output For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
Sample Input 2 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 1 3 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 2 1
Sample Output 6 -1 給出一個主序列,和一個匹配序列,如果能夠匹配,則輸出匹配序列第一個數在主序列中的位置. 這道題是kmp的基礎題. kmp演算法連結:http://www.cnblogs.com/c-cloud/p/3224788.html 程式碼如下:
Input The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000].
Output For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
Sample Input 2 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 1 3 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 2 1
Sample Output 6 -1 給出一個主序列,和一個匹配序列,如果能夠匹配,則輸出匹配序列第一個數在主序列中的位置. 這道題是kmp的基礎題. kmp演算法連結:http://www.cnblogs.com/c-cloud/p/3224788.html 程式碼如下:
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; int nextt[10010],T[10010]; int S[1000100]; int n,m,ans; void get_next() { int i=1,j=0; nextt[1]=0;//next 陣列的前兩項其實是可以直接算出來的,next[1]=0,next[1]=1; while(i<m) { if(j==0||T[i]==T[j])//T[i]表示字尾單個字元,T[j]表示字首單個字元 { ++i; ++j; nextt[i]=j; } else j=nextt[j];//若字元不同,則j回溯 } } void kmp() { int i=1,j=1; while(i<=n&&j<=m) { if(j==0||S[i]==T[j]) { ++i,++j; } else j=nextt[j]; } if(j>m) printf("%d\n",i-m); else printf("-1\n"); } int main() { int t; scanf("%d",&t); while(t--) { scanf("%d%d",&n,&m); int i,j; for(i=1;i<=n;i++) scanf("%d",&S[i]); for(i=1;i<=m;i++) scanf("%d",&T[i]); S[0]=T[0]=-1; get_next(); kmp(); } }