1. 程式人生 > >501. Find Mode in Binary Search Tree - Easy

501. Find Mode in Binary Search Tree - Easy

Given a binary search tree (BST) with duplicates, find all the mode(s) (the most frequently occurred element) in the given BST.

Assume a BST is defined as follows:

  • The left subtree of a node contains only nodes with keys less than or equal to the node's key.
  • The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
  • Both the left and right subtrees must also be binary search trees.

 

For example:
Given BST [1,null,2,2],

   1
    \
     2
    /
   2

 

return [2].

Note: If a tree has more than one mode, you can return them in any order.

Follow up: Could you do that without using any extra space? (Assume that the implicit stack space incurred due to recursion does not count).

 

M1: using extra space

traverse的時候,用hashmap存每個節點出現的次數

time: O(n), space: O(n)

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    int max = 0;
    
    
public int[] findMode(TreeNode root) { if(root == null) { return new int[] {}; } Map<Integer, Integer> map = new HashMap<>(); traverse(root, map); List<Integer> tmp = new ArrayList<>(); for(Map.Entry<Integer, Integer> entry : map.entrySet()) { if(entry.getValue() == max) { tmp.add(entry.getKey()); } } int[] res = new int[tmp.size()]; for(int i = 0; i < tmp.size(); i++) { res[i] = tmp.get(i); } return res; } public void traverse(TreeNode root, Map<Integer, Integer> map) { if(root == null) { return; } map.put(root.val, map.getOrDefault(root.val, 0) + 1); max = Math.max(max, map.get(root.val)); traverse(root.left, map); traverse(root.right, map); } }

 

M2: optimized, not using extra space