openCV學習筆記(二十) —— 影象濾波 —— 線性濾波(方框濾波、均值濾波、高斯濾波)
阿新 • • 發佈:2018-12-30
影象濾波簡介
方框濾波——boxFilter()
原理
方框濾波程式
#include<opencv2/opencv.hpp> #include <vector> #include <time.h> using namespace std; using namespace cv; #define BOX_FILTER_ORIGINAL_WINDOW_NAME "方框濾波【原圖】" #define BOX_FILTER_RESULT_WINDOW_NAME "方框濾波【效果圖】" int main() { //載入原圖 Mat image = imread("test.jpg"); //建立視窗 namedWindow(BOX_FILTER_ORIGINAL_WINDOW_NAME); namedWindow(BOX_FILTER_RESULT_WINDOW_NAME); //顯示原圖 imshow(BOX_FILTER_ORIGINAL_WINDOW_NAME, image); //進行濾波操作 Mat out; boxFilter(image, out, -1, Size(5, 5)); //顯示效果圖 imshow(BOX_FILTER_RESULT_WINDOW_NAME, out); waitKey(0); return 0; }
均值濾波 —— blur()
原理
均值濾波程式
#include<opencv2/opencv.hpp> #include <vector> #include <time.h> using namespace std; using namespace cv; #define BOX_FILTER_ORIGINAL_WINDOW_NAME "均值濾波【原圖】" #define BOX_FILTER_RESULT_WINDOW_NAME "均值濾波【效果圖】" int main() { //載入原圖 Mat image = imread("test.jpg"); //建立視窗 namedWindow(BOX_FILTER_ORIGINAL_WINDOW_NAME); namedWindow(BOX_FILTER_RESULT_WINDOW_NAME); //顯示原圖 imshow(BOX_FILTER_ORIGINAL_WINDOW_NAME, image); //進行濾波操作 Mat out; blur(image, out, Size(5, 5)); //顯示效果圖 imshow(BOX_FILTER_RESULT_WINDOW_NAME, out); waitKey(0); return 0; }
高斯濾波——GaussianBlur()
原理
高斯濾波程式
#include<opencv2/opencv.hpp> #include <vector> #include <time.h> using namespace std; using namespace cv; #define BOX_FILTER_ORIGINAL_WINDOW_NAME "高斯濾波【原圖】" #define BOX_FILTER_RESULT_WINDOW_NAME "高斯濾波【效果圖】" int main() { //載入原圖 Mat image = imread("test.jpg"); //建立視窗 namedWindow(BOX_FILTER_ORIGINAL_WINDOW_NAME); namedWindow(BOX_FILTER_RESULT_WINDOW_NAME); //顯示原圖 imshow(BOX_FILTER_ORIGINAL_WINDOW_NAME, image); //進行濾波操作 Mat out; GaussianBlur(image, out, Size(5, 5), 0, 0); //顯示效果圖 imshow(BOX_FILTER_RESULT_WINDOW_NAME, out); waitKey(0); return 0; }
影象線性濾波綜合示例程式
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace std;
using namespace cv;
#define BOX_FILTER_WINDOW "方框濾波"
#define MEAN_BLUR_WINDOW "均值濾波"
#define GAUSSIAN_BLUR_WINDOW "高斯濾波"
Mat g_srcImage, g_dstImage1, g_dstImage2, g_dstImage3; //儲存圖片的Mat型別
int g_nBoxFilterValue = 3; //方框濾波引數值
int g_nMeanBlurValue = 3; //均值濾波引數值
int g_nGaussianBlurValue = 3; //高斯濾波引數值
//軌跡條的回撥函式
static void on_BoxFilter(int, void *); //方框濾波
static void on_MeanBlur(int, void *); //均值濾波
static void on_GaussianBlur(int, void *); //高斯濾波
int main()
{
//改變console字型顏色
system("color5E");
//載入原圖
g_srcImage = imread("test.jpg");
if (!g_srcImage.data)
{
printf("讀取srcImage錯誤!\n");
return -1;
}
//複製原圖到三個Mat型別中
g_dstImage1 = g_srcImage.clone();
g_dstImage2 = g_srcImage.clone();
g_dstImage3 = g_srcImage.clone();
//顯示原圖
imshow("原圖視窗", g_srcImage);
//1.方框濾波
//建立視窗
namedWindow(BOX_FILTER_WINDOW);
//建立軌跡條
createTrackbar("核心值:", BOX_FILTER_WINDOW, &g_nBoxFilterValue, 40, on_BoxFilter);
on_BoxFilter(g_nBoxFilterValue, 0);
imshow(BOX_FILTER_WINDOW, g_dstImage1);
//2.均值濾波
//建立視窗
namedWindow(MEAN_BLUR_WINDOW);
//建立軌跡條
createTrackbar("核心值:", MEAN_BLUR_WINDOW, &g_nMeanBlurValue, 40, on_MeanBlur);
on_MeanBlur(g_nMeanBlurValue, 0);
//3.高斯濾波
//建立視窗
namedWindow(GAUSSIAN_BLUR_WINDOW);
createTrackbar("核心值:", GAUSSIAN_BLUR_WINDOW, &g_nGaussianBlurValue, 40, on_GaussianBlur);
on_GaussianBlur(g_nGaussianBlurValue, 0);
//輸出一些幫助資訊
cout << endl << "\t請調整滾動條觀察影象效果\n"
<< "\t按下“q”鍵時,程式退出!\n";
//按下"q"鍵時,程式退出
while (char(waitKey(1)) != 'q');
destroyAllWindows();
return 0;
}
static void on_BoxFilter(int, void *)
{
boxFilter(g_srcImage, g_dstImage1, -1, Size(g_nBoxFilterValue + 1, g_nBoxFilterValue + 1));
imshow("方框濾波", g_dstImage1);
}
static void on_MeanBlur(int, void *)
{
blur(g_srcImage, g_dstImage2, Size(g_nMeanBlurValue + 1, g_nMeanBlurValue + 1), Point(-1, -1));
imshow("均值濾波", g_dstImage2);
}
static void on_GaussianBlur(int, void *)
{
GaussianBlur(g_srcImage, g_dstImage3, Size(g_nGaussianBlurValue*2 + 1, g_nGaussianBlurValue*2 + 1), 0, 0);
imshow("高斯濾波", g_dstImage3);
}