Caffe原始碼(五):conv_layer 分析
阿新 • • 發佈:2018-12-31
目錄
簡單介紹
首先要明確的一點是:ConvolutionLayer 是 BaseConvolutionLayer的子類,BaseConvolutionLayer 是 Layer 的子類。ConvolutionLayer 除了繼承了相應的成員變數和函式以外,自己的成員函式主要有:compute_output_shape,Forward_cpu,Backward_cpu 。
主要函式
1. compute_output_shape 函式:
計算輸出feature map 的shape。
template <typename Dtype>
void ConvolutionLayer<Dtype>::compute_output_shape() {
this ->height_out_ = (this->height_ + 2 * this->pad_h_ - this->kernel_h_)
/ this->stride_h_ + 1; //輸出feature map 的 height
this->width_out_ = (this->width_ + 2 * this->pad_w_ - this->kernel_w_)
/ this->stride_w_ + 1; //輸出 feature map 的 width
}
2.Forward_cpu 函式:
該函式在Layer 中宣告,實現前向傳播功能。
template <typename Dtype>
void ConvolutionLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const Dtype* weight = this->blobs_[0]->cpu_data();
//blobs_ 用來儲存可學習的引數blobs_[0] 是weight,blobs_[1]是bias
for (int i = 0; i < bottom.size(); ++i) {
//這裡的i為輸入bottom的個數,輸入多少個bottom就產生相應個數的輸出 top。
const Dtype* bottom_data = bottom[i]->cpu_data();
Dtype* top_data = top[i]->mutable_cpu_data();
for (int n = 0; n < this->num_; ++n) {
this->forward_cpu_gemm(bottom_data + bottom[i]->offset(n), weight,
top_data + top[i]->offset(n));//計算卷積操作之後的輸出
if (this->bias_term_) {
const Dtype* bias = this->blobs_[1]->cpu_data();
this->forward_cpu_bias(top_data + top[i]->offset(n), bias);
}//加上bias
}
}
}
Layer的建構函式
explicit Layer(const LayerParameter& param)
: layer_param_(param) {
// Set phase and copy blobs (if there are any).
phase_ = param.phase();
if (layer_param_.blobs_size() > 0) {
blobs_.resize(layer_param_.blobs_size());
for (int i = 0; i < layer_param_.blobs_size(); ++i) {
blobs_[i].reset(new Blob<Dtype>());
blobs_[i]->FromProto(layer_param_.blobs(i));
}
}
}//用從protobuf 讀入message LayerParameter 中的blobs 初始化 blobs_
//blobs_定義:vector<shared_ptr<Blob<Dtype> > > blobs_
3.Backward_cpu 函式
實現反向傳播,根據上一層傳下來的導數計算相應的bottom data , weight, bias 的導數
template <typename Dtype>
void ConvolutionLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
const Dtype* weight = this->blobs_[0]->cpu_data();
Dtype* weight_diff = this->blobs_[0]->mutable_cpu_diff();
if (this->param_propagate_down_[0]) {
caffe_set(this->blobs_[0]->count(), Dtype(0), weight_diff);
}
if (this->bias_term_ && this->param_propagate_down_[1]) {
caffe_set(this->blobs_[1]->count(), Dtype(0),
this->blobs_[1]->mutable_cpu_diff());
}
for (int i = 0; i < top.size(); ++i) {
const Dtype* top_diff = top[i]->cpu_diff();//上一層傳下來的導數
const Dtype* bottom_data = bottom[i]->cpu_data();
Dtype* bottom_diff = bottom[i]->mutable_cpu_diff();//傳給下一層的導數
// Bias gradient, if necessary.
if (this->bias_term_ && this->param_propagate_down_[1]) {
Dtype* bias_diff = this->blobs_[1]->mutable_cpu_diff();
for (int n = 0; n < this->num_; ++n) {
this->backward_cpu_bias(bias_diff, top_diff + top[i]->offset(n));
}
}
if (this->param_propagate_down_[0] || propagate_down[i]) {
for (int n = 0; n < this->num_; ++n) {
// gradient w.r.t. weight. Note that we will accumulate diffs.
if (this->param_propagate_down_[0]) {
this->weight_cpu_gemm(bottom_data + bottom[i]->offset(n),
top_diff + top[i]->offset(n), weight_diff);
}//對weight 計算導數(用來更新weight)
// gradient w.r.t. bottom data, if necessary.
if (propagate_down[i]) {
this->backward_cpu_gemm(top_diff + top[i]->offset(n), weight,
bottom_diff + bottom[i]->offset(n));
}//對bottom資料計算導數(傳給下一層)
}
}
}
}