1. 程式人生 > >199 Binary Tree Right Side View

199 Binary Tree Right Side View

題目:

Given a binary tree, imagine yourself standing on the right side of it, return the values of the nodes you can see ordered from top to bottom.

For example:
Given the following binary tree,
   1            <---
 /   \
2     3         <---
 \     \
  5     4       <---
You should return
[1, 3, 4].

解題思路:
這題的考點是樹的層次遍歷的變形。
1. 從右往左看去,能看到的每層的結點就是該層最右的結點,該層其它結點都被最右結點擋住了。
2. 解法就是層次遍歷每一層,每一層的最右結點就是要找的結點。
3. 即,使用一個佇列儲存樹的一層結點,將每一層最右結點放到結果連結串列中。

具體程式碼實現,採用兩個佇列,一個佇列放上一層的結點,一個佇列放當前層的結點。
也可以只採用一個佇列,此時只用記住每一層的結點個數,即可將一個佇列中的結點切分為父結點層和子結點層。

程式碼實現:
採用兩個佇列:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution { public List<Integer> rightSideView(TreeNode root) { List<Integer> res = new ArrayList(); if(root == null) return res; LinkedList<TreeNode> father = new LinkedList(); father.add(root); res.add(root.val); while
(!father.isEmpty()) { LinkedList<TreeNode> children = new LinkedList(); while(!father.isEmpty()) { TreeNode r = father.poll(); if(r.left != null) children.add(r.left); if(r.right != null) children.add(r.right); } if(!children.isEmpty()) { father = children; res.add(father.peekLast().val); } } return res; } }
210 / 210 test cases passed.
Status: Accepted
Runtime: 3 ms

只採用一個佇列:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    public List<Integer> rightSideView(TreeNode root) {
        ArrayList<Integer> result = new ArrayList<Integer>();

        if(root == null) return result;

        LinkedList<TreeNode> queue = new LinkedList<TreeNode>();
        queue.add(root);

        while(queue.size() > 0){
            //get size here
            int size = queue.size();

            for(int i=0; i<size; i++){
                TreeNode top = queue.remove();

                //the first element in the queue (right-most of the tree)
                if(i==0){
                    result.add(top.val);
                }
                //add right first
                if(top.right != null){
                    queue.add(top.right);
                }
                //add left
                if(top.left != null){
                    queue.add(top.left);
                }
            }
        }

        return result;
    }
}
210 / 210 test cases passed.
Status: Accepted
Runtime: 3 ms