Weekly Machine Learning Opensource Roundup – Nov. 22, 2018
Self-Driving Pi Car A deep neural network based self-driving car, that combines Lego Mindstorms NXT with the computational power of a Raspberry Pi 3. SOP-Generator A simple LSTM based Statement of Purpose Generator for grad school. EuclidesDB A multi-model machine learning feature database that is tight coupled with PyTorch and provides a backend for including and querying data on the model feature space. While other packages and more exact methods exist to model uplift.
相關推薦
Weekly Machine Learning Opensource Roundup – Nov. 22, 2018
Self-Driving Pi Car A deep neural network based self-driving car, that combines Lego Mindstorms NXT with the computational power of a Raspberry Pi 3. SOP-
Roundup Of Machine Learning Forecasts And Market Estimates, 2018
These and many other fascinating insights are from the latest series of machine learning market forecasts, market estimates, and projections. Machine learn
怎麽把Thu Nov 22 2018 10:49:36 GMT+0800轉換成正常日期
minutes con ear ets hour ont 正常 get .get this.data //Thu Nov 22 2018 10:49:36 GMT+0800 this.date_of_birth = date.getFullYear() + ‘-‘ + (d
Open Source News Roundup: June 22, 2018
Next Week! Amazon Linux Launch Event Join us for an interactive event and discover how you can innovate faster using AWS services
識別和追蹤主題層次的影響力者(來自2018 Machine Learning 論文學習筆記)
本文作者:合肥工業大學 管理學院 錢洋 email:[email protected] 。 以下內容是個人的論文閱讀筆記,內容可能有不到之處,歡迎交流。 未經本人允許禁止轉載。 文章目錄 論文來源 論文學習筆記 論文來源 來
22.向最優的錯誤率看齊 翻譯自 吳恩達新書-Machine Learning Yearning
在我們的貓咪識別器的例⼦中,最理想的情況是實現⼀個最優的識別器,提供接近於0的錯誤率。如果圖片中有貓,人類幾乎可以100%識別出來;因此,我們也期望機器可以達到同樣的水平。 和貓咪的例子相比,其他的問題相對複雜得多。例設,你正在開發一款語⾳設別系統,但你發現1
A Comprehensive survey of machine learning for Internet (2018) via Boutaba,Mohammed et al【sec 5】
5 Traffic routing 網路流量路由是網路中的基礎,並且需要選擇用於分組傳輸的路徑。 選擇標準是多種多樣的,主要取決於操作策略和目標,例如成本最小化,鏈路利用率最大化和QoS配置。 流量路由需要具有強能力的ML模型能力,例如能夠應對和擴充套件複雜和動態網路拓撲,學習所選路
A Comprehensive survey of machine learning for Internet (2018) via Boutaba,Mohammed et al【Sec 2】
這是AI for Net的一篇survey。 文章目錄 Section 2 A primer of AI for net 2.1 learning paradigm 2.2 Data c
All eyes on AI, machine learning at Cocon 2018
KOCHI: It could well be a harbinger of'machine learning'. In tune with the'technology' strewn around the venue of Cocon 2018, a robot stepped forward to de
Top 5 Machine Learning Trends of 2018 Analytics Insight
Machine learning is a modern science which enables computers to work without being explicitly programmed. The modern-day technology deploys algorithms that
Machine Learning Top 10 Articles for the Past Month (v.Oct 2018)
Machine Learning Top 10 Articles for the Past Month (v.Oct 2018)For the past month, we ranked nearly 1,400 Machine Learning articles to pick the Top 10 sto
CobbleStone Software's Contract Machine Learning Showcased at 2018 ACC Conference
CobbleStone's CLM platform provides powerful AI and ML to systematically analyze paper contracts and performs contract text extraction for improved contrac
Your Guide to AI and Machine Learning at re:Invent 2018
re:Invent 2018 is almost here! As you plan your agenda, artificial intelligence (AI) is undoubtedly a hot topic on your list. This year w
Golang Weekly Issue 238: November 22, 2018
Subscribe now » Easy to unsubscribe at any time. Your e-mail address is safe — here's our privacy policy.
Machine Learning Weekly 1.0 documentation
王威廉(這哥們分享的都是乾貨) 哥大統計系Andrew Gelman的新版《貝葉斯資料分析》上架了。 AG認為“貝葉斯推理”的概念太狹窄,“貝葉斯統計”太寬泛,還是“貝葉斯”的名字比較靠譜。他認為貝葉斯可以是資料+正則化,資料+先驗知識,邏輯概率推理,以及不同時間發生的不同事件等等。 有興趣可以看看書的幻
machine learning--L1 ,L2 norm
lan font 更多 ora net 例如 參數 而已 內容 關於L1範數和L2範數的內容和圖示,感覺已經看過千百遍,剛剛看完此大牛博客http://blog.csdn.net/zouxy09/article/details/24971995/,此時此刻終於弄懂了那麽
Ng第十一課:機器學習系統的設計(Machine Learning System Design)
未能 計算公式 pos 構建 我們 行動 mic 哪些 指標 11.1 首先要做什麽 11.2 誤差分析 11.3 類偏斜的誤差度量 11.4 查全率和查準率之間的權衡 11.5 機器學習的數據 11.1 首先要做什麽 在接下來的視頻將談到機器
[Machine Learning (Andrew NG courses)]V. Octave Tutorial (Week 2)
img and learning text net con fonts http .net [Machine Learning (Andrew NG courses)]V. Octave Tutorial (Week 2)
Machine Learning in Action-chapter2-k近鄰算法
turn fma 全部 pytho label -c log eps 數組 一.numpy()函數 1.shape[]讀取矩陣的長度 例: import numpy as np x = np.array([[1,2],[2,3],[3,4]]) print x
Ng第十七課:大規模機器學習(Large Scale Machine Learning)
在線 src 化簡 ima 機器學習 learning 大型數據集 machine cnblogs 17.1 大型數據集的學習 17.2 隨機梯度下降法 17.3 微型批量梯度下降 17.4 隨機梯度下降收斂 17.5 在線學習 17.6 映射化簡和數據並行