[洛谷P4980]【模板】Polya定理
題目大意:給一個$n$個點的環染色,有$n$中顏色,問有多少種塗色方案是的旋轉後本質不同
題解:$burnside$引理:$ans=\dfrac1{|G|}\sum\limits_{g\in G}A_g$
對於環,有$Polya$定理:$ans=\dfrac1{|G|}\sum\limits_{g\in G}m^{c(g)}$($m$為顏色數,在這道題中$m=n$,$c(g)$為置換$g$中迴圈個數)
因為是迴圈相同,所以$|G|=n$,當$g=\left(
\begin{smallmatrix}
1&2&\cdots&n-k&n-k+1&\cdots&n\\
k+1&k+2&\cdots&n&1&\cdots&k
\end{smallmatrix}
\right)$時,$c(g)=\gcd(k,n)$
$$
\begin{align*}
ans&=\dfrac1{|G|}\sum\limits_{g\in G}m^{c(g)}\\
&=\dfrac1n\sum\limits_{i=1}^nn^{(i,n)}\\
&=\dfrac1n\sum\limits_{d|n}n^d\sum\limits_{i=1}^n[(i,n)=d]\\
&=\dfrac1n\sum\limits_{d|n}n^d\sum\limits_{i=1}^{\lfloor\frac nd\rfloor}[(i\cdot d,n)=d]\\
&=\dfrac1n\sum\limits_{d|n}n^d\sum\limits_{i=1}^{\lfloor\frac nd\rfloor}[(i,\dfrac nd)=1]\\
&=\dfrac1n\sum\limits_{d|n}n^d\varphi(\dfrac nd)
\end{align*}
$$
雖然是多組詢問,但是依然可以$O(\sqrt n)$求$\varphi$,複雜度$O(Tn^{\frac34})$,當然,正確的方法是求出質因數後遞迴求出每個因數的$\varphi$,複雜度$O(T\sqrt n)$
卡點:無
C++ Code:
#include <cstdio> const int mod = 1e9 + 7; namespace Math { inline int getphi(int x) { int res = x; for (register int i = 2; i * i <= x; ++i) if (x % i == 0) { res = res / i * (i - 1); while (x % i == 0) x /= i; } if (x > 1) res = res / x * (x - 1); return res; } inline int pw(int base, int p) { static int res; for (res = 1; p; p >>= 1, base = static_cast<long long> (base) * base % mod) if (p & 1) res = static_cast<long long> (res) * base % mod; return res; } inline int inv(int x) { return pw(x, mod - 2); } } inline void reduce(int &x) { x += x >> 31 & mod; } int Tim, n, ans; inline int get(int d) { return static_cast<long long> (Math::pw(n, d)) * Math::getphi(n / d) % mod; } int main() { scanf("%d", &Tim); while (Tim --> 0) { scanf("%d", &n); ans = 0; for (int i = 1; i * i <= n; ++i) if (n % i == 0) { reduce(ans += get(i) - mod); if (i != n / i) reduce(ans += get(n / i) - mod); } printf("%lld\n", static_cast<long long> (ans) * Math::inv(n) % mod); } return 0; }