1. 程式人生 > >C++小知識(九)——Eigen庫的基本使用方法、PCL計算協方差矩陣

C++小知識(九)——Eigen庫的基本使用方法、PCL計算協方差矩陣

轉載自:https://blog.csdn.net/r1254/article/details/47418871

以及https://blog.csdn.net/wokaowokaowokao12345/article/details/53397488

第一部分:

1.1前言

Eigen是一個高層次的C ++庫,有效支援 得到的線性代數,矩陣和向量運算,數值分析及其相關的演算法。

1.2配置

關於Eigen庫的配置只需要在屬性表包含目錄中新增Eigen路徑即可。 
這裡寫圖片描述

1.3例子

Example 1:

#include <iostream>
#include <Eigen/Dense>

void main()
{
    Eigen::MatrixXd m(2, 2);            //宣告一個MatrixXd型別的變數,它是2*2的矩陣,未初始化
    m(0, 0) = 3;                        //將矩陣第1個元素初始化3
    m(1, 0) = 2.5;                      //將矩陣第3個元素初始化3
    m(0, 1) = -1;  
    m(1, 1) = m(1, 0) + m(0, 1);  
    std::cout << m << std::endl;
}

Eigen標頭檔案定義了很多型別,但對於簡單的應用程式,可能只使用MatrixXd型別。 這表示任意大小的矩陣(MatrixXd中的X),其中每個條目是雙精度(MatrixXd中的d)。 Eigen / Dense標頭檔案定義了MatrixXd型別和相關型別的所有成員函式。 在這個標頭檔案中定義的所有類和函式都在特徵名稱空間中。

這裡寫圖片描述

Example 2:

#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
using namespace std;
int main()
{  
    MatrixXd m = MatrixXd::Random(3,3);                 //使用Random隨機初始化3*3的矩陣
    m = (m + MatrixXd::Constant(3,3,1.2)) * 50;  
    cout << "m =" << endl << m << endl;  
    VectorXd v(3);                                      //這表示任意大小的(列)向量。
    v << 1, 2, 3;  
    cout << "m * v =" << endl << m * v << endl;
}
#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
using namespace std;
int main()
{  
    Matrix3d m = Matrix3d::Random();                    //使用Random隨機初始化固定大小的3*3的矩陣
    m = (m + Matrix3d::Constant(1.2)) * 50;  
    cout << "m =" << endl << m << endl;  Vector3d v(1,2,3);    
    cout << "m * v =" << endl << m * v << endl;
}

Matrix&Vector

Example 3:

#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
int main()
{  
    MatrixXd m(2,2);  
    m(0,0) = 3;  
    m(1,0) = 2.5;  
    m(0,1) = -1;  
    m(1,1) = m(1,0) + m(0,1);  
    std::cout << "Here is the matrix m:\n" << m << std::endl;  
    VectorXd v(2);  
    v(0) = 4;  
    v(1) = v(0) - 1;  
    std::cout << "Here is the vector v:\n" << v << std::endl;
}

逗號初始化

Example 4:

Matrix3f m;
m << 1, 2, 3,     4, 5, 6,     7, 8, 9;
std::cout << m;

通過Resize調整矩陣大小

矩陣的當前大小可以通過rows(),cols()和size()檢索。 這些方法分別返回行數,列數和係數數。 通過resize()方法調整動態大小矩陣的大小。 
Example 5:

#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
int main()
{  
    MatrixXd m(2,5);                //初始化大小2*5
    m.resize(4,3);                  //重新調整為4*3
    std::cout << "The matrix m is of size "            << m.rows() << "x" << m.cols() << std::endl;  
    std::cout << "It has " << m.size() << " coefficients" << std::endl;  
    VectorXd v(2);  v.resize(5);  
    std::cout << "The vector v is of size " << v.size() << std::endl;
    std::cout << "As a matrix, v is of size "            << v.rows() << "x" << v.cols() << std::endl;
}

通過賦值調整矩陣大小

Example 6:

MatrixXf a(2, 2); 
std::cout << "a is of size " << a.rows() << "x" << a.cols() << std::endl; 
MatrixXf b(3, 3); 
a = b; 
std::cout << "a is now of size " << a.rows() << "x" << a.cols() << std::endl;

Eigen + - * 等運算

Eigen通過通用的C ++算術運算子(例如+, - ,)或通過特殊方法(如dot(),cross()等)的過載提供矩陣/向量算術運算。對於Matrix類(矩陣和向量) 只被過載以支援線性代數運算。 例如,matrix1 matrix2表示矩陣矩陣乘積。 
Example 7:

#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
int main()
{  
    Matrix2d a;  a << 1, 2,       3, 4;  
    MatrixXd b(2,2); 
    b << 2, 3,       1, 4; 
    std::cout << "a + b =\n" << a + b << std::endl;
    std::cout << "a - b =\n" << a - b << std::endl; 
    std::cout << "Doing a += b;" << std::endl; 
    a += b;  
    std::cout << "Now a =\n" << a << std::endl; 
    Vector3d v(1,2,3);  
    Vector3d w(1,0,0);  
    std::cout << "-v + w - v =\n" << -v + w - v << std::endl;
}

Example 8:

#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
int main()
{  
    Matrix2d a;  
    a << 1, 2,       3, 4;  
    Vector3d v(1,2,3);  
    std::cout << "a * 2.5 =\n" << a * 2.5 << std::endl; 
    std::cout << "0.1 * v =\n" << 0.1 * v << std::endl; 
    std::cout << "Doing v *= 2;" << std::endl;  v *= 2; 
    std::cout << "Now v =\n" << v << std::endl;
}

矩陣轉置、共軛和伴隨矩陣

MatrixXcf a = MatrixXcf::Random(2,2);
cout << "Here is the matrix a\n" << a << endl;
cout << "Here is the matrix a^T\n" << a.transpose() << endl;
cout << "Here is the conjugate of a\n" << a.conjugate() << endl;
cout << "Here is the matrix a^*\n" << a.adjoint() << endl;

禁止如下操作:

a = a.transpose(); // !!! do NOT do this !!!

但是可以使用如下函式:

a.transposeInPlace();

此時a被其轉置替換。

#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
int main()
{
    Matrix2i a;
    a << 1, 2, 3, 4;
    std::cout << "Here is the matrix a:\n" << a << std::endl;
    a = a.transpose(); // !!! do NOT do this !!!
    std::cout << "and the result of the aliasing effect:\n" << a << std::endl;
}

矩陣* 矩陣和矩陣* 向量操作

#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
int main()
{  
    Matrix2d mat;  mat << 1, 2,         3, 4;  
    Vector2d u(-1,1), v(2,0);  
    std::cout << "Here is mat*mat:\n" << mat*mat << std::endl;  
    std::cout << "Here is mat*u:\n" << mat*u << std::endl;  
    std::cout << "Here is u^T*mat:\n" << u.transpose()*mat << std::endl; 
    std::cout << "Here is u^T*v:\n" << u.transpose()*v << std::endl;
    std::cout << "Here is u*v^T:\n" << u*v.transpose() << std::endl;  
    std::cout << "Let's multiply mat by itself" << std::endl;  
    mat = mat*mat;  std::cout << "Now mat is mat:\n" << mat << std::endl;
}

點乘和叉乘

對於點積和叉乘積,需要使用dot()和cross()方法。

#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
using namespace std;
int main()
{  
    Vector3d v(1,2,3);  
    Vector3d w(0,1,2); 
    cout << "Dot product: " << v.dot(w) << endl; 
    double dp = v.adjoint()*w; // automatic conversion of the inner product to a scalar  
    cout << "Dot product via a matrix product: " << dp << endl;  
    cout << "Cross product:\n" << v.cross(w) << endl;
}
#include <iostream>
#include <Eigen/Dense>
using namespace std;
int main()
{  
    Eigen::Matrix2d mat;
    mat << 1, 2,         3, 4;
    cout << "Here is mat.sum():       " << mat.sum()       << endl;  
    cout << "Here is mat.prod():      " << mat.prod()      << endl; 
    cout << "Here is mat.mean():      " << mat.mean()      << endl; 
    cout << "Here is mat.minCoeff():  " << mat.minCoeff()  << endl;  
    cout << "Here is mat.maxCoeff():  " << mat.maxCoeff()  << endl; 
    cout << "Here is mat.trace():     " << mat.trace()     << endl;
}

陣列的運算(未完待續)
Eigen最小二乘估計

最小平方求解的最好方法是使用SVD分解。 Eigen提供一個作為JacobiSVD類,它的solve()是做最小二乘解。式子為Ax=b 
經過和Matlab對比。

#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main()
{   
    MatrixXf A = MatrixXf::Random(3, 2);  
    cout << "Here is the matrix A:\n" << A << endl;  
    VectorXf b = VectorXf::Random(3);   
    cout << "Here is the right hand side b:\n" << b << endl;  
    cout << "The least-squares solution is:\n"        << A.jacobiSvd(ComputeThinU | ComputeThinV).solve(b) << endl;
}

這裡寫圖片描述

第二部分:

矩陣、向量初始化

#include <iostream>
#include "Eigen/Dense"
using namespace Eigen;
int main()
{
    MatrixXf m1(3,4);   //動態矩陣,建立3行4列。
    MatrixXf m2(4,3);   //4行3列,依此類推。
    MatrixXf m3(3,3);

    Vector3f v1;        //若是靜態陣列,則不用指定行或者列
    /* 初始化 */
    Matrix3d m = Matrix3d::Random();
    m1 = MatrixXf::Zero(3,4);       //用0矩陣初始化,要指定行列數
    m2 = MatrixXf::Zero(4,3);
    m3 = MatrixXf::Identity(3,3);   //用單位矩陣初始化
    v1 = Vector3f::Zero();          //同理,若是靜態的,不用指定行列數

    m1 << 1,0,0,1,      //也可以以這種方式初始化
        1,5,0,1,
        0,0,9,1;
    m2 << 1,0,0,
        0,4,0,
        0,0,7,
        1,1,1;
    //向量初始化,與矩陣類似
    Vector3d v3(1,2,3);
    VectorXf vx(30);
}

C++陣列和矩陣轉換

使用Map函式,可以實現Eigen的矩陣和c++中的陣列直接轉換,語法如下:

//@param MatrixType 矩陣型別
//@param MapOptions 可選引數,指的是指標是否對齊,Aligned, or Unaligned. The default is Unaligned.
//@param StrideType 可選引數,步長
/*
    Map<typename MatrixType,
        int MapOptions,
        typename StrideType>
*/
    int i;
    //陣列轉矩陣
    double *aMat = new double[20];
    for(i =0;i<20;i++)
    {
        aMat[i] = rand()%11;
    }
    //靜態矩陣,編譯時確定維數 Matrix<double,4,5> 
    Eigen:Map<Matrix<double,4,5> > staMat(aMat);


    //輸出
    for (int i = 0; i < staMat.size(); i++)
        std::cout << *(staMat.data() + i) << " ";
    std::cout << std::endl << std::endl;


    //動態矩陣,執行時確定 MatrixXd
    Map<MatrixXd> dymMat(aMat,4,5);


    //輸出,應該和上面一致
    for (int i = 0; i < dymMat.size(); i++)
        std::cout << *(dymMat.data() + i) << " ";
    std::cout << std::endl << std::endl;

    //Matrix中的資料存在一維陣列中,預設是行優先的格式,即一行行的存
    //data()返回Matrix中的指標
    dymMat.data();

矩陣基礎操作

eigen過載了基礎的+ - * / += -= = /= 可以表示標量和矩陣或者矩陣和矩陣

#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
int main()
{
    //單個取值,單個賦值
    double value00 = staMat(0,0);
    double value10 = staMat(1,0);
    staMat(0,0) = 100;
    std::cout << value00 <<value10<<std::endl;
    std::cout <<staMat<<std::endl<<std::endl;
    //加減乘除示例 Matrix2d 等同於 Matrix<double,2,2>
    Matrix2d a;
     a << 1, 2,
     3, 4;
    MatrixXd b(2,2);
     b << 2, 3,
     1, 4;

    Matrix2d c = a + b;
    std::cout<< c<<std::endl<<std::endl;

    c = a - b;
    std::cout<<c<<std::endl<<std::endl;

    c = a * 2;
    std::cout<<c<<std::endl<<std::endl;

    c = 2.5 * a;
    std::cout<<c<<std::endl<<std::endl;

    c = a / 2;
    std::cout<<c<<std::endl<<std::endl;

    c = a * b;
    std::cout<<c<<std::endl<<std::endl;

點積和叉積

#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
using namespace std;
int main()
{
    //點積、叉積(針對向量的)
    Vector3d v(1,2,3);
    Vector3d w(0,1,2);
    std::cout<<v.dot(w)<<std::endl<<std::endl;
    std::cout<<w.cross(v)<<std::endl<<std::endl;
}
*/

轉置、伴隨、行列式、逆矩陣

小矩陣(4 * 4及以下)eigen會自動優化,預設採用LU分解,效率不高

#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main()
{
    Matrix2d c;
     c << 1, 2,
     3, 4;
    //轉置、伴隨
    std::cout<<c<<std::endl<<std::endl;
    std::cout<<"轉置\n"<<c.transpose()<<std::endl<<std::endl;
    std::cout<<"伴隨\n"<<c.adjoint()<<std::endl<<std::endl;
    //逆矩陣、行列式
    std::cout << "行列式: " << c.determinant() << std::endl;
    std::cout << "逆矩陣\n" << c.inverse() << std::endl;
}

計算特徵值和特徵向量

#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main()
{
    //特徵向量、特徵值
    std::cout << "Here is the matrix A:\n" << a << std::endl;
    SelfAdjointEigenSolver<Matrix2d> eigensolver(a);
    if (eigensolver.info() != Success) abort();
     std::cout << "特徵值:\n" << eigensolver.eigenvalues() << std::endl;
     std::cout << "Here's a matrix whose columns are eigenvectors of A \n"
     << "corresponding to these eigenvalues:\n"
     << eigensolver.eigenvectors() << std::endl;
}

解線性方程

#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main()
{
    //線性方程求解 Ax =B;
    Matrix4d A;
    A << 2,-1,-1,1,
        1,1,-2,1,
        4,-6,2,-2,
        3,6,-9,7;

    Vector4d B(2,4,4,9);

    Vector4d x = A.colPivHouseholderQr().solve(B);
    Vector4d x2 = A.llt().solve(B);
    Vector4d x3 = A.ldlt().solve(B);    


    std::cout << "The solution is:\n" << x <<"\n\n"<<x2<<"\n\n"<<x3 <<std::endl;
}

除了colPivHouseholderQr、LLT、LDLT,還有以下的函式可以求解線性方程組,請注意精度和速度: 解小矩陣(4*4)基本沒有速度差別

最小二乘求解

最小二乘求解有兩種方式,jacobiSvd或者colPivHouseholderQr,4*4以下的小矩陣速度沒有區別,jacobiSvd可能更快,大矩陣最好用colPivHouseholderQr

#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main()
{
    MatrixXf A1 = MatrixXf::Random(3, 2);
    std::cout << "Here is the matrix A:\n" << A1 << std::endl;
    VectorXf b1 = VectorXf::Random(3);
    std::cout << "Here is the right hand side b:\n" << b1 << std::endl;
    //jacobiSvd 方式:Slow (but fast for small matrices)
    std::cout << "The least-squares solution is:\n"
    << A1.jacobiSvd(ComputeThinU | ComputeThinV).solve(b1) << std::endl;
    //colPivHouseholderQr方法:fast
    std::cout << "The least-squares solution is:\n"
    << A1.colPivHouseholderQr().solve(b1) << std::endl;
}

稀疏矩陣

稀疏矩陣的標頭檔案包括:

#include

typedef Eigen::Triplet<double> T;
std::vector<T> tripletList;
triplets.reserve(estimation_of_entries); //estimation_of_entries是預估的條目
for(...)
{
    tripletList.push_back(T(i,j,v_ij));//第 i,j個有值的位置的值
}
SparseMatrixType mat(rows,cols);
mat.setFromTriplets(tripletList.begin(), tripletList.end());
// mat is ready to go!

2.直接將已知的非0值插入

SparseMatrix<double> mat(rows,cols);
mat.reserve(VectorXi::Constant(cols,6));
for(...)
{
    // i,j 個非零值 v_ij != 0
    mat.insert(i,j) = v_ij;
}
mat.makeCompressed(); // optional

稀疏矩陣支援大部分一元和二元運算:

sm1.real() sm1.imag() -sm1 0.5*sm1 
sm1+sm2 sm1-sm2 sm1.cwiseProduct(sm2) 
二元運算中,稀疏矩陣和普通矩陣可以混合使用

//dm表示普通矩陣 
dm2 = sm1 + dm1; 
也支援計算轉置矩陣和伴隨矩陣

參考以下連結

第三部分:

其他相關部落格:

1、單獨下載與安裝:https://blog.csdn.net/augusdi/article/details/12907341

2、一篇較詳細的教程:https://blog.csdn.net/wzaltzap/article/details/79501856

3、計算特徵值特徵向量:https://blog.csdn.net/wokaowokaowokao12345/article/details/47375427