HDU-6053 TrickGCD
阿新 • • 發佈:2019-01-01
TrickGCD
Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)Total Submission(s): 549 Accepted Submission(s): 211
Problem Description You are given an array A , and Zhu wants to know there are how many different array B satisfy the following conditions?
* 1≤Bi≤Ai
* For each pair( l , r ) (1
Input The first line is an integer T(1≤T≤10) describe the number of test cases.
Each test case begins with an integer number n describe the size of array A.
Then a line contains n numbers describe each element of A
You can assume that 1≤n,Ai≤105
Output For the kth test case , first output "Case #k: " , then output an integer as answer in a single line . because the answer may be large , so you are only need to output answer m
Sample Input 1 4 4 4 4 4
Sample Output Case #1: 17
給你序列a,讓你構造序列b,要求 1<=b[i]<=a[i],且b序列的gcd>=2。問你方案數。
容易想到的就是我們列舉整個序列的gcd,然後a[i]/gcd就是i位置能夠填的數的個數,然後每個位置累積就能得到數列為gcd時的方案數。
最後容斥一下累加就是答案。但是最大gcd可以是100000和明顯這樣做n2,會超時。
那麼我們把a[i]/gcd的放在一起,然後用快速冪直接求出值。
#include <bits/stdc++.h> using namespace std; const int MAXN = 1e5+7; const long long mod = 1e9+7; typedef long long LL; int n; int a[MAXN];//a陣列統計每個數的個數 int sum[MAXN];//字首和 LL num[MAXN];//num[i]表示數列gcd為i時的的累積 LL dp[MAXN];//dp[i]表示容斥完之後也就是最終結果 gcd為i時的累積 LL quick_pow(int a,int b) { long long sum = 1,base = a; while(b) { if(b & 1)sum = sum*base%mod; base = base*base%mod; b >>= 1; } return sum; } int main() { int t; scanf("%d",&t); int ca = 0; while(t--) { int x; scanf("%d",&n); memset(a,0,sizeof a); for(int i = 0; i < n; ++i) { scanf("%d",&x); a[x]++; } memset(sum,0,sizeof sum); for(int i = 1; i <= 100000; ++i)sum[i] = sum[i-1] + a[i]; int flag = 1; for(int i = 2; i <= 100000; ++i)//列舉gcd if(!flag)num[i] = 0; else { num[i] = 1; for(int j = 0; j <= 100000; j+=i) { int b = sum[min(j+i-1,100000)] - sum[max(j-1,0)];//注意邊界 int a = j/i; if(!a && b)//如果存在比當前i小的數,那麼後面的肯定都不符合 { num[i] = 0; flag = 0; break; } num[i] = num[i]*quick_pow(a,b)%mod; } } for(int i = 100000; i >= 2; --i) { dp[i] = num[i]; for(int j = i<<1; j <= 100000; j +=i) { dp[i] -= dp[j]; dp[i] = (dp[i]%mod+mod)%mod; } } LL ans = 0; for(int i = 2; i <= 100000; ++i)ans = (ans+dp[i])%mod; printf("Case #%d: %I64d\n",++ca,ans); } return 0; }