使用 setcontext 類函式實現 mini 協程庫
阿新 • • 發佈:2019-01-02
協程實現原理
協程的本質都是通過修改 ESP 和 EIP 指標來實現的。其理論上還是單執行緒在執行.
程式在CPU上執行時依賴3個暫存器:
- ESP寄存值指向當前棧頂地址,指向當前指令需要的資料
- EBP指向當前活動棧幀的基地址
- 指令暫存器IP,指向當前需要執行的指令
其中主要有(IP,ESP)暫存器最重要,這兩個暫存器指標的改變可以修改當前需要載入到 CPU 執行的指令和資料,當某個操作陷入到耗時的等待中時,通過修改這兩個指標即可讓出CPU,交給其他的任務去使用,每個任務都必須主動的讓出CPU,然後等待下一次的排程來繼續未完成的任務,這樣就可以最大程度的利用CPU,當一個任務等待過程非常短的時候,就出現了多個任務並行執行的效果,也就是協程。
實現協程的多種方法
- 利用
glibc
的ucontext
元件(雲風的庫) - 使用匯編來切換上下文(實現miniC協程,騰訊libco)
- 利用C語言語法
switch-case
的奇淫技巧來實現(Protothreads) - 利用了 C 語言的
setjmp
和longjmp
( 一種協程的 C/C++ 實現,要求函式裡面使用 static local 的變數來儲存協程內部的資料) - 利用
Boost
庫提供的兩種實現,分別是stackless
與stackfull
- 等等語言和庫....
當然了,最"厲害"的還是去用匯編去實現,因為這樣會避免許多跨平臺等問題.比如在有些平臺就會用不了setcontext
glibc
庫裡的上下文操作函式:
1.getcontext() : 獲取當前context
2.setcontext() : 切換到指定context
3.makecontext() : 設定 函式指標 和 堆疊 到對應context儲存的 sp 和 pc 暫存器中,
呼叫之前要先呼叫 getcontext()
4.swapcontext() : 儲存當前context,並且切換到指定context
具體使用可以自己查詢一下,最後我會用他們實現一個C++11
協程庫.
如何實現儲存和恢復協程執行棧
例項:使用C++11
和setcontext
類函式實現協程庫
main.cpp
#include "Coroutine.h"
#include <iostream>
#include <stdio.h>
#include <unistd.h>
using namespace std;
using namespace Tattoo;
class TEST
{
public:
void func3(std::shared_ptr<CoroutineSchedule> s, void *arg)
{
for (int i = 0; i < 10; i++)
{
cout << "coroutine : " << s->GetCurCoID() << " : " << *(int *)arg + i << endl;
s->Yield();
}
}
};
int main()
{
std::shared_ptr<CoroutineSchedule> schedule = std::make_shared<CoroutineSchedule>();
int test1 = 1;
int test2 = 2;
int test3 = 3;
TEST tt;
int id_co1 = schedule->CreateCoroutine(std::bind(&TEST::func3, &tt, schedule, &test1));
int id_co2 = schedule->CreateCoroutine(std::bind(&TEST::func3, &tt, schedule, &test2));
int id_co3 = schedule->CreateCoroutine(std::bind(&TEST::func3, &tt, schedule, &test3));
printf("main start\n");
while ((schedule->IsAlive(id_co1)) && (schedule->IsAlive(id_co2)) && (schedule->IsAlive(id_co3)))
{
schedule->ResumeCoroutine(id_co1);
schedule->ResumeCoroutine(id_co2);
schedule->ResumeCoroutine(id_co3);
}
printf("main end\n");
return 0;
}
CoroutineSchedule.h
#ifndef _COROUTINESCHEDULER_H
#define _COROUTINESCHEDULER_H //B.h
#include <ucontext.h>
#include <unordered_map>
#include <memory>
#include <functional>
#include <iostream>
#define INFO(x, y, z) std::cout << x << " : " << y << " : " << z << std::endl;
namespace Tattoo
{
class Coroutine;
class CoroutineSchedule
{
public:
static const int STACK_SIZE = 1024 * 1024;
static const int MAX_CO = 16;
using CoFun = std::function<void()>;
CoroutineSchedule() : cur_co_num_(0), cur_run_id_(-1) {}
~CoroutineSchedule() {}
CoroutineSchedule(const CoroutineSchedule &) = delete;
CoroutineSchedule &operator=(const CoroutineSchedule &) = delete;
int CreateCoroutine(CoFun func);
void DestroyCroutine(int cor_id);
void ResumeCoroutine(int cor_id);
void Yield();
bool IsAlive(int cor_id);
int GetCurCoID() { return cur_run_id_; }
static void static_fun(void *arg);
private:
std::unordered_map<int, std::shared_ptr<Coroutine>> mmap_;
char SchStack[STACK_SIZE] = {0};
ucontext_t main_ctx;
int cur_co_num_; /*實時記錄協程數量,也會控制map下標*/
int cur_run_id_;
};
} // namespace Tattoo
#endif
CoroutineSchedule.cpp
#include "Coroutine.h"
namespace Tattoo
{
int CoroutineSchedule::CreateCoroutine(CoFun func)
{
/*這裡可以用 cur_max_num_ 去限制協程數目*/
cur_co_num_++;
auto cor = std::make_shared<Coroutine>(this, func, cur_co_num_);
mmap_[cur_co_num_] = cor;
return cur_co_num_;
}
void CoroutineSchedule::DestroyCroutine(int cor_id)
{
if (mmap_.find(cor_id) == mmap_.end())
return;
if (cor_id == cur_run_id_)
cur_run_id_ = -1;
mmap_[cor_id]->SetStatus(Coroutine::CO_FINSHED);
cur_co_num_--; /*下次重複使用就行了,不需要 erase */
}
void CoroutineSchedule::Yield()
{
if (-1 == cur_run_id_)
return;
int id = cur_run_id_;
std::shared_ptr<Coroutine> cor = mmap_[id];
// assert(reinterpret_cast<char *>(&cor) > );
cor->save_stack(SchStack + STACK_SIZE);
cor->SetStatus(Coroutine::CO_SUSPEND);
cur_run_id_ = -1;
swapcontext(&cor->ctx_, &main_ctx);
}
bool CoroutineSchedule::IsAlive(int cor_id)
{
if (mmap_[cor_id]->GetStatus() == Coroutine::CO_FINSHED)
return false;
else
return true;
}
void CoroutineSchedule::ResumeCoroutine(int cor_id)
{
// INFO("*******************************************ResumeCoroutine", cor_id, cur_run_id_);
if (mmap_.find(cor_id) == mmap_.end()) /*不存在的 id */
return;
assert(this->cur_run_id_ == -1); //保證沒有其他協程執行
std::shared_ptr<Coroutine> cor = mmap_[cor_id];
switch (cor->GetStatus())
{
case Coroutine::CO_READY:
{
getcontext(&cor->ctx_);
cor->ctx_.uc_stack.ss_sp = SchStack;
cor->ctx_.uc_stack.ss_size = STACK_SIZE;
cor->ctx_.uc_link = &main_ctx;
cur_run_id_ = cor_id;
cor->SetStatus(Coroutine::CO_RUNNING);
makecontext(&cor->ctx_, reinterpret_cast<void (*)()>(static_fun), 1, this);
swapcontext(&this->main_ctx, &cor->ctx_);
}
break;
case Coroutine::CO_SUSPEND:
{
memcpy(SchStack + STACK_SIZE - cor->stack_cur_size_, cor->CorStack, cor->stack_cur_size_);
cur_run_id_ = cor_id;
cor->SetStatus(Coroutine::CO_RUNNING);
swapcontext(&main_ctx, &cor->ctx_);
}
break;
default:
assert(0);
}
if (-1 == cur_run_id_ && cor->status_ == Coroutine::CO_FINSHED)
DestroyCroutine(cor_id);
}
void CoroutineSchedule::static_fun(void *arg)
{
CoroutineSchedule *sch = reinterpret_cast<CoroutineSchedule *>(arg);
int id = sch->cur_run_id_;
std::shared_ptr<Coroutine> cor = sch->mmap_[id];
cor->func_();
sch->cur_run_id_ = -1;
sch->mmap_[id]->SetStatus(Coroutine::CO_FINSHED);
}
} // namespace Tattoo
Coroutine.h
#ifndef _COROUTINE_H
#define _COROUTINE_H
#include <ucontext.h>
#include <memory>
#include <assert.h>
#include <string.h>
#include "CoroutineSchedule.h"
namespace Tattoo
{
class Coroutine
{
public:
using CoFun = std::function<void()>;
enum
{
CO_FINSHED,
CO_READY,
CO_RUNNING,
CO_SUSPEND,
};
Coroutine(CoroutineSchedule *sch, CoFun func, int id);
~Coroutine();
Coroutine(const Coroutine &) = delete;
Coroutine &operator=(const Coroutine &) = delete;
void SetStatus(int status);
int GetStatus();
private:
friend class CoroutineSchedule;
void save_stack(void *top);
CoFun func_;
ucontext_t ctx_;
std::shared_ptr<CoroutineSchedule> sch_;
std::ptrdiff_t stack_max_size_; //stack最大 大小
std::ptrdiff_t stack_cur_size_; //協程實際大小
int status_;
char *CorStack;
int id_;
};
} // namespace Tattoo
#endif
Coroutine.cpp
#include <ucontext.h>
#include <memory>
#include <assert.h>
#include <string.h>
#include "Coroutine.h"
namespace Tattoo
{
Coroutine::Coroutine(CoroutineSchedule *sch, CoFun func, int id)
: func_(func), id_(id), sch_(sch),
stack_max_size_(0), stack_cur_size_(0),
status_(CO_READY), CorStack(0)
{
}
Coroutine::~Coroutine()
{
delete[] CorStack;
}
void Coroutine::SetStatus(int status)
{
status_ = status;
}
int Coroutine::GetStatus()
{
return status_;
}
void Coroutine::save_stack(void *top)
{
char dummy = 0;
assert((char *)top - &dummy <= CoroutineSchedule::STACK_SIZE);
if (stack_max_size_ < (char *)top - &dummy)
{
delete[] CorStack;
stack_max_size_ = (char *)top - &dummy;
CorStack = new char[stack_max_size_];
}
stack_cur_size_ = (char *)top - &dummy;
memcpy(CorStack, &dummy, stack_cur_size_);
}
} // namespace Tattoo
執行截圖:
因為我的目標是用匯編去實現,所以也就不花時間去優化程式碼了(比如裡面還存在原始指標,new,delete ,記憶體洩露等).