1. 程式人生 > >跳一跳Python程式碼

跳一跳Python程式碼

# coding: utf-8
import os
import sys
import subprocess
import shutil
import time
import math
from PIL import Image, ImageDraw
import random
import json
import re


# === 思路 ===
# 核心:每次落穩之後截圖,根據截圖算出棋子的座標和下一個塊頂面的中點座標,
#      根據兩個點的距離乘以一個時間係數獲得長按的時間
# 識別棋子:靠棋子的顏色來識別位置,通過截圖發現最下面一行大概是一條直線,就從上往下一行一行遍歷,
#      比較顏色(顏色用了一個區間來比較)找到最下面的那一行的所有點,然後求箇中點,
#      求好之後再讓 Y 軸座標減小棋子底盤的一半高度從而得到中心點的座標
# 識別棋盤:靠底色和方塊的色差來做,從分數之下的位置開始,一行一行掃描,由於圓形的塊最頂上是一條線,
#      方形的上面大概是一個點,所以就用類似識別棋子的做法多識別了幾個點求中點,
#      這時候得到了塊中點的 X 軸座標,這時候假設現在棋子在當前塊的中心,
#      根據一個通過截圖獲取的固定的角度來推出中點的 Y 座標
# 最後:根據兩點的座標算距離乘以係數來獲取長按時間(似乎可以直接用 X 軸距離)


# TODO: 解決定位偏移的問題
# TODO: 看看兩個塊中心到中軸距離是否相同,如果是的話靠這個來判斷一下當前超前還是落後,便於矯正
# TODO: 一些固定值根據截圖的具體大小計算
# TODO: 直接用 X 軸距離簡化邏輯

def open_accordant_config():
    screen_size = _get_screen_size()
    config_file = "{path}/config/{screen_size}/config.json".format(
        path=sys.path[0],
        screen_size=screen_size
    )
    if os.path.exists(config_file):
        with open(config_file, 'r') as f:
            print("Load config file from {}".format(config_file))
            return json.load(f)
    else:
        with open('{}/config/default.json'.format(sys.path[0]), 'r') as f:
            print("Load default config")
            return json.load(f)


def _get_screen_size():
    size_str = os.popen('adb shell wm size').read()
    m = re.search('(\d+)x(\d+)', size_str)
    if m:
        width = m.group(1)
        height = m.group(2)
        return "{height}x{width}".format(height=height, width=width)


config = open_accordant_config()

# Magic Number,不設定可能無法正常執行,請根據具體截圖從上到下按需設定
under_game_score_y = config['under_game_score_y']
press_coefficient = config['press_coefficient']       # 長按的時間係數,請自己根據實際情況調節
piece_base_height_1_2 = config['piece_base_height_1_2']   # 二分之一的棋子底座高度,可能要調節
piece_body_width = config['piece_body_width']             # 棋子的寬度,比截圖中量到的稍微大一點比較安全,可能要調節

# 模擬按壓的起始點座標,需要自動重複遊戲請設定成“再來一局”的座標
if config.get('swipe'):
    swipe = config['swipe']
else:
    swipe = {}
    swipe['x1'], swipe['y1'], swipe['x2'], swipe['y2'] = 320, 410, 320, 410


screenshot_backup_dir = 'screenshot_backups/'
if not os.path.isdir(screenshot_backup_dir):
        os.mkdir(screenshot_backup_dir)


def pull_screenshot():
    process = subprocess.Popen('adb shell screencap -p', shell=True, stdout=subprocess.PIPE)
    screenshot = process.stdout.read()
    if sys.platform == 'win32':
        screenshot = screenshot.replace(b'\r\n', b'\n')
    f = open('autojump.png', 'wb')
    f.write(screenshot)
    f.close()

def backup_screenshot(ts):
    # 為了方便失敗的時候 debug
    if not os.path.isdir(screenshot_backup_dir):
        os.mkdir(screenshot_backup_dir)
    shutil.copy('autojump.png', '{}{}.png'.format(screenshot_backup_dir, ts))


def save_debug_creenshot(ts, im, piece_x, piece_y, board_x, board_y):
    draw = ImageDraw.Draw(im)
    # 對debug圖片加上詳細的註釋
    draw.line((piece_x, piece_y) + (board_x, board_y), fill=2, width=3)
    draw.line((piece_x, 0, piece_x, im.size[1]), fill=(255, 0, 0))
    draw.line((0, piece_y, im.size[0], piece_y), fill=(255, 0, 0))
    draw.line((board_x, 0, board_x, im.size[1]), fill=(0, 0, 255))
    draw.line((0, board_y, im.size[0], board_y), fill=(0, 0, 255))
    draw.ellipse((piece_x - 10, piece_y - 10, piece_x + 10, piece_y + 10), fill=(255, 0, 0))
    draw.ellipse((board_x - 10, board_y - 10, board_x + 10, board_y + 10), fill=(0, 0, 255))
    del draw
    im.save('{}{}_d.png'.format(screenshot_backup_dir, ts))


def set_button_position(im):
    # 將swipe設定為 `再來一局` 按鈕的位置
    global swipe_x1, swipe_y1, swipe_x2, swipe_y2
    w, h = im.size
    left = w / 2
    top = 1003 * (h / 1280.0) + 10
    swipe_x1, swipe_y1, swipe_x2, swipe_y2 = left, top, left, top


def jump(distance):
    press_time = distance * press_coefficient
    press_time = max(press_time, 200)   # 設定 200 ms 是最小的按壓時間
    press_time = int(press_time)
    cmd = 'adb shell input swipe {x1} {y1} {x2} {y2} {duration}'.format(
        x1=swipe['x1'],
        y1=swipe['y1'],
        x2=swipe['x2'],
        y2=swipe['y2'],
        duration=press_time
    )
    print(cmd)
    os.system(cmd)

# 轉換色彩模式hsv2rgb
def hsv2rgb(h, s, v):
    h = float(h)
    s = float(s)
    v = float(v)
    h60 = h / 60.0
    h60f = math.floor(h60)
    hi = int(h60f) % 6
    f = h60 - h60f
    p = v * (1 - s)
    q = v * (1 - f * s)
    t = v * (1 - (1 - f) * s)
    r, g, b = 0, 0, 0
    if hi == 0: r, g, b = v, t, p
    elif hi == 1: r, g, b = q, v, p
    elif hi == 2: r, g, b = p, v, t
    elif hi == 3: r, g, b = p, q, v
    elif hi == 4: r, g, b = t, p, v
    elif hi == 5: r, g, b = v, p, q
    r, g, b = int(r * 255), int(g * 255), int(b * 255)
    return r, g, b

# 轉換色彩模式rgb2hsv
def rgb2hsv(r, g, b):
    r, g, b = r/255.0, g/255.0, b/255.0
    mx = max(r, g, b)
    mn = min(r, g, b)
    df = mx-mn
    if mx == mn:
        h = 0
    elif mx == r:
        h = (60 * ((g-b)/df) + 360) % 360
    elif mx == g:
        h = (60 * ((b-r)/df) + 120) % 360
    elif mx == b:
        h = (60 * ((r-g)/df) + 240) % 360
    if mx == 0:
        s = 0
    else:
        s = df/mx
    v = mx
    return h, s, v


def find_piece_and_board(im):
    w, h = im.size

    piece_x_sum = 0
    piece_x_c = 0
    piece_y_max = 0
    board_x = 0
    board_y = 0

    left_value = 0
    left_count = 0
    right_value = 0
    right_count = 0
    from_left_find_board_y = 0
    from_right_find_board_y = 0


    scan_x_border = int(w / 8)  # 掃描棋子時的左右邊界
    scan_start_y = 0  # 掃描的起始y座標
    im_pixel=im.load()
    # 以50px步長,嘗試探測scan_start_y
    for i in range(int(h / 3), int( h*2 /3 ), 50):
        last_pixel = im_pixel[0,i]
        for j in range(1, w):
            pixel=im_pixel[j,i]
            # 不是純色的線,則記錄scan_start_y的值,準備跳出迴圈
            if pixel[0] != last_pixel[0] or pixel[1] != last_pixel[1] or pixel[2] != last_pixel[2]:
                scan_start_y = i - 50
                break
        if scan_start_y:
            break
    print('scan_start_y: ', scan_start_y)

    # 從scan_start_y開始往下掃描,棋子應位於螢幕上半部分,這裡暫定不超過2/3
    for i in range(scan_start_y, int(h * 2 / 3)):
        for j in range(scan_x_border, w - scan_x_border):  # 橫座標方面也減少了一部分掃描開銷
            pixel = im_pixel[j,i]
            # 根據棋子的最低行的顏色判斷,找最後一行那些點的平均值,這個顏色這樣應該 OK,暫時不提出來
            if (50 < pixel[0] < 60) and (53 < pixel[1] < 63) and (95 < pixel[2] < 110):
                piece_x_sum += j
                piece_x_c += 1
                piece_y_max = max(i, piece_y_max)

    if not all((piece_x_sum, piece_x_c)):
        return 0, 0, 0, 0
    piece_x = piece_x_sum / piece_x_c
    piece_y = piece_y_max - piece_base_height_1_2  # 上移棋子底盤高度的一半

    for i in range(int(h / 3), int(h * 2 / 3)):

        last_pixel = im_pixel[0, i]
        # 計算陰影的RGB值,通過photoshop觀察,陰影部分其實就是背景色的明度V 乘以0.7的樣子
        h, s, v = rgb2hsv(last_pixel[0], last_pixel[1], last_pixel[2])
        r, g, b = hsv2rgb(h, s, v * 0.7)

        if from_left_find_board_y and from_right_find_board_y:
            break

        if not board_x:
            board_x_sum = 0
            board_x_c = 0

            for j in range(w):
                pixel = im_pixel[j,i]
                # 修掉腦袋比下一個小格子還高的情況的 bug
                if abs(j - piece_x) < piece_body_width:
                    continue

                # 修掉圓頂的時候一條線導致的小 bug,這個顏色判斷應該 OK,暫時不提出來
                if abs(pixel[0] - last_pixel[0]) + abs(pixel[1] - last_pixel[1]) + abs(pixel[2] - last_pixel[2]) > 10:
                    board_x_sum += j
                    board_x_c += 1
            if board_x_sum:
                board_x = board_x_sum / board_x_c
        else:
            # 繼續往下查詢,從左到右掃描,找到第一個與背景顏色不同的畫素點,記錄位置
            # 當有連續3個相同的記錄時,表示發現了一條直線
            # 這條直線即為目標board的左邊緣
            # 然後當前的 y 值減 3 獲得左邊緣的第一個畫素
            # 就是頂部的左邊頂點
            for j in range(w):
                pixel = im_pixel[j, i]
                # 修掉腦袋比下一個小格子還高的情況的 bug
                if abs(j - piece_x) < piece_body_width:
                    continue
                if (abs(pixel[0] - last_pixel[0]) + abs(pixel[1] - last_pixel[1]) + abs(pixel[2] - last_pixel[2])
                        > 10) and (abs(pixel[0] - r) + abs(pixel[1] - g) + abs(pixel[2] - b) > 10):
                    if left_value == j:
                        left_count = left_count+1
                    else:
                        left_value = j
                        left_count = 1

                    if left_count > 3:
                        from_left_find_board_y = i - 3
                    break
            # 邏輯跟上面類似,但是方向從右向左
            # 當有遮擋時,只會有一邊有遮擋
            # 算出來兩個必然有一個是對的
            for j in range(w)[::-1]:
                pixel = im_pixel[j, i]
                # 修掉腦袋比下一個小格子還高的情況的 bug
                if abs(j - piece_x) < piece_body_width:
                    continue
                if (abs(pixel[0] - last_pixel[0]) + abs(pixel[1] - last_pixel[1]) + abs(pixel[2] - last_pixel[2])
                    > 10) and (abs(pixel[0] - r) + abs(pixel[1] - g) + abs(pixel[2] - b) > 10):
                    if right_value == j:
                        right_count = left_count + 1
                    else:
                        right_value = j
                        right_count = 1

                    if right_count > 3:
                        from_right_find_board_y = i - 3
                    break

    # 如果頂部畫素比較多,說明圖案近圓形,相應的求出來的值需要增大,這裡暫定增大頂部寬的三分之一
    if board_x_c > 5:
        from_left_find_board_y = from_left_find_board_y + board_x_c / 3
        from_right_find_board_y = from_right_find_board_y + board_x_c / 3

    # 按實際的角度來算,找到接近下一個 board 中心的座標 這裡的角度應該是30°,值應該是tan 30°,math.sqrt(3) / 3
    board_y = piece_y - abs(board_x - piece_x) * math.sqrt(3) / 3

    # 從左從右取出兩個資料進行對比,選出來更接近原來老演算法的那個值
    if abs(board_y - from_left_find_board_y) > abs(from_right_find_board_y):
        new_board_y = from_right_find_board_y
    else:
        new_board_y = from_left_find_board_y

    if not all((board_x, board_y)):
        return 0, 0, 0, 0

    return piece_x, piece_y, board_x, new_board_y


def dump_device_info():
    size_str = os.popen('adb shell wm size').read()
    device_str = os.popen('adb shell getprop ro.product.model').read()
    density_str = os.popen('adb shell wm density').read()
    print("如果你的指令碼無法工作,上報issue時請copy如下資訊:\n**********\
        \nScreen: {size}\nDensity: {dpi}\nDeviceType: {type}\nOS: {os}\nPython: {python}\n**********".format(
            size=size_str.strip(),
            type=device_str.strip(),
            dpi=density_str.strip(),
            os=sys.platform,
            python=sys.version
    ))


def check_adb():
    flag = os.system('adb devices')
    if flag == 1:
        print('請安裝ADB並配置環境變數')
        sys.exit()


def main():

    h, s, v = rgb2hsv(201, 204, 214)
    print(h, s, v)
    r, g, b = hsv2rgb(h, s, v*0.7)
    print(r, g, b)

    dump_device_info()
    check_adb()
    while True:
        pull_screenshot()
        im = Image.open('./autojump.png')
        # 獲取棋子和 board 的位置
        piece_x, piece_y, board_x, board_y = find_piece_and_board(im)
        ts = int(time.time())
        print(ts, piece_x, piece_y, board_x, board_y)
        set_button_position(im)
        jump(math.sqrt((board_x - piece_x) ** 2 + (board_y - piece_y) ** 2))
        save_debug_creenshot(ts, im, piece_x, piece_y, board_x, board_y)
        backup_screenshot(ts)
        time.sleep(random.uniform(1.2, 1.4))   # 為了保證截圖的時候應落穩了,多延遲一會兒


if __name__ == '__main__':
    main()