1. 程式人生 > >DeepLearning(基於caffe)實戰專案(8)--修改caffe原始碼從新增loss(層)函式開始

DeepLearning(基於caffe)實戰專案(8)--修改caffe原始碼從新增loss(層)函式開始

在caffe中摸爬滾打了一個多月了,修改caffe原始碼,早就想練練手了,loss層是一個比較獨立的一個層,而且可以仿照caffe給的樣例進行新增,難度會稍微小點。caffe自帶了十種loss層(contrastive、euclidean、hinge、multinomial_logistic、sigmoid_cross_entropy、smooth_L1、smooth_L1_ohem、softmax、softmax_ohem、infogain)

詳細見:http://blog.csdn.net/sihailongwang/article/details/72657637

公式含義推薦:http://blog.csdn.net/u012177034/article/details/52144325

接下來,就是自己新增一個新的loss(層)函數了,我打算新增:Absolute loss

第一步:在caffe.proto增加對應的LayerParameter message

optional AbsoluteLossParameter Absolute_loss_param = 151;
message AbsoluteLossParameter 
{
  optional float dis = 1 [default = 1];
}

第二步:在./include/caffe/layers/下增加相應的layer的宣告

#ifndef CAFFE_ABSOLUTE_LOSS_LAYER_HPP_
#define CAFFE_ABSOLUTE_LOSS_LAYER_HPP_


#include <vector>


#include "caffe/blob.hpp"
#include "caffe/layer.hpp"
#include "caffe/proto/caffe.pb.h"


#include "caffe/layers/loss_layer.hpp"


namespace caffe {


template <typename Dtype>
class AbsoluteLossLayer : public LossLayer<Dtype> {
 public:
  explicit AbsoluteLossLayer(const LayerParameter& param)
      : LossLayer<Dtype>(param), dis_() {}
  virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);


  virtual inline const char* type() const { return "AbsoluteLoss"; }


  virtual inline bool AllowForceBackward(const int bottom_index) const {
    return true;
  }


 protected:
  /// @copydoc AbsoluteLossLayer
  virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);


  virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
  virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);


  Blob<Dtype> dis_;
};


}  // namespace caffe


#endif  // CAFFE_EUCLIDEAN_LOSS_LAYER_HPP_

#endif  // CAFFE_EUCLIDEAN_LOSS_LAYER_HPP_

第三步:在./src/caffe/util/math_functions.cpp/下增加“絕對值求和”模板函式

說明:因為AbsoluteLoss需要絕對值求和,所以在math_fuction.cpp中需要增加一個“絕對值”模板函式(與此同時,我驚喜的發現了BLAS、CBLAS

/********************************************************************************************************************

TIPS:科普一下什麼是BLAS/CBLAS

Basic Linear Algebra Subprograms,即基礎線性代數子程式庫,裡邊擁有大量的已經編好的關於線性代數運算的程式,主要用於向量和矩陣的計算的高效能數學庫,本身是由Fortran編寫的,為了方便C/C++程式使用,就有了BLAS的C介面庫CBLAS,詳細列表:http://www.netlib.org/blas/

/********************************************************************************************************************

//--------------------------add------------------------------------------
template <>
float caffe_cpu_asum<float>(const int n, const float* x) {
  return cblas_sasum(n, x, 1);      //sum of absolute values
}

template <>
double caffe_cpu_asum<double>(const int n, const double* x) {
  return cblas_dasum(n, x, 1);      //sum of absolute values
}

template <typename Dtype>
Dtype caffe_cpu_abs_sum(const int n, const Dtype* x) {
  return caffe_cpu_asum(n, x);
}

template
float caffe_cpu_asum<float>(const int n, const float* x);

template
double caffe_cpu_asum<double>(const int n, const double* x);
//-------------------------add-------------------------------------------

第四步:在./src/caffe/layers/下增加相應layer的CPU/GPU實現檔案

   CPU版本(absolute_loss_layer.cpp)

#include <vector>

#include "caffe/layers/absolute_loss_layer.hpp"
#include "caffe/util/math_functions.hpp"

namespace caffe {

template <typename Dtype>
void AbsoluteLossLayer<Dtype>::Reshape(
  const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
  LossLayer<Dtype>::Reshape(bottom, top);   //在LossLayer 中定義
  CHECK_EQ(bottom[0]->count(1), bottom[1]->count(1))  //保證輸入維度相同
      << "Inputs must have the same dimension.";
  dis_.ReshapeLike(*bottom[0]);           //Blob 型別的diff_用來存放兩個bottom的差,和bottom具有相同的
}

template <typename Dtype>
void AbsoluteLossLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
    const vector<Blob<Dtype>*>& top) {
  int count = bottom[0]->count();   //總共有count個featuremap 
  caffe_sub(
      count,
      bottom[0]->cpu_data(),
      bottom[1]->cpu_data(),
      dis_.mutable_cpu_data());    //diff_ = bottom[0] - bottom[1] 
  Dtype loss_param = this->layer_param_.absolute_loss_param().dis();
  Dtype abs_sum = caffe_cpu_abs_sum(count,dis_.cpu_data());
  //Dtype dot = caffe_cpu_abs_sum()(count, diff_.cpu_data(), dis_.cpu_data());
  Dtype loss = loss_param * abs_sum / bottom[0]->num();
  top[0]->mutable_cpu_data()[0] = loss;
}

template <typename Dtype>
void AbsoluteLossLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
    const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
  for (int i = 0; i < 2; ++i) {
    if (propagate_down[i]) {
       //對於輸入的label bottom propagate_dowm為0
      const Dtype sign = (i == 0) ? 1 : -1;
      const Dtype alpha = sign * top[0]->cpu_diff()[0] / bottom[i]->num();
      caffe_cpu_axpby(
          bottom[i]->count(),                       // count
          alpha,                             // alpha
          dis_.cpu_data(),                        // a
          Dtype(0),                           // beta
          bottom[i]->mutable_cpu_diff());                 // b
    }     //bottom[i]->mutable_cpu_diff()) = alpha*dis_.cpu_data()
  }
}

#ifdef CPU_ONLY
STUB_GPU(AbsoluteLossLayer);
#endif

INSTANTIATE_CLASS(AbsoluteLossLayer);
REGISTER_LAYER_CLASS(AbsoluteLoss);

}  // namespace caffe
GPU版本(absolute_loss_layer.cu)
#include <vector>


#include "caffe/layers/absolute_loss_layer.hpp"
#include "caffe/util/math_functions.hpp"

namespace caffe {

template <typename Dtype>
void AbsoluteLossLayer<Dtype>::Forward_gpu(const vector<Blob<Dtype>*>& bottom,
    const vector<Blob<Dtype>*>& top) {
  int count = bottom[0]->count();   //總共有count個featuremap 
  caffe_gpu_sub(
      count,
      bottom[0]->gpu_data(),
      bottom[1]->gpu_data(),
      dis_.mutable_gpu_data());
  Dtype loss_param = this->layer_param_.
  Dtype abs_sum;
  caffe_gpu_asum(count, dis_.gpu_data(), &abs_sum);
  Dtype loss = loss_param * abs_sum/ bottom[0]->num();
  top[0]->mutable_cpu_data()[0] = loss;
}
template <typename Dtype>
void AbsoluteLossLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top,
    const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
  for (int i = 0; i < 2; ++i) {
    if (propagate_down[i]) {
      const Dtype sign = (i == 0) ? 1 : -1;
      const Dtype alpha = sign * top[0]->cpu_diff()[0] / bottom[i]->num();
      caffe_gpu_axpby(
          bottom[i]->count(),                       // count
          alpha,                             // alpha
          dis_.gpu_data(),                        // a
          Dtype(0),                           // beta
          bottom[i]->mutable_gpu_diff());                 // b
    }
  }
}

INSTANTIATE_LAYER_GPU_FUNCS(AbsoluteLossLayer);

}  // namespace caffe

第五步:用vs開啟caffe,進行編譯,編譯成功後,恭喜你,功力又上升一個段位,哈哈

1.修改../windows/libcaffe下的兩個檔案:libcaffe.vcxproj和libcaffe.vcxproj.filters

libcaffe.vcxproj增加:

<ClCompile Include="..\..\src\caffe\layers\absolute_loss_layer.cpp" />
<ClInclude Include="..\..\include\caffe\layers\absolute_loss_layer.hpp" />
<CudaCompile Include="..\..\src\caffe\layers\absolute_loss_layer.cu" />
libcaffe.vcxproj.filter增加:
<ClInclude Include="..\..\include\caffe\layers\absolute_loss_layer.hpp">
<Filter>include\layers</Filter>
</ClInclude>
<CudaCompile Include="..\..\src\caffe\layers\absolute_loss_layer.cu">
<Filter>cu\layers</Filter>
</CudaCompile>
<ClCompile Include="..\..\src\caffe\layers\absolute_loss_layer.cpp">
<Filter>src\layers</Filter>
</ClCompile>
2.開啟caffe.sln,再進行重新生成新的解決方案,編譯通過後,恭喜你功力又升一級!