1. 程式人生 > >如何學習自然語言處理:一本書和一門課

如何學習自然語言處理:一本書和一門課

關於“如何學習自然語言處理”,有很多同學通過不同的途徑留過言,這方面雖然很早之前寫過幾篇小文章:《如何學習自然語言處理》和《幾本自然語言處理入門書》,但是更推崇知乎上這個問答:自然語言處理怎麼最快入門,裡面有微軟亞洲研究院周明老師的系統回答和清華大學劉知遠老師的傾情奉獻:初學者如何查閱自然語言處理(NLP)領域學術資料,當然還包括其他同學的無私分享。

不過,對於希望入門NLP的同學來說,推薦你們先看一下這本書: Speech and Language Processing,第一版中文名譯為《自然語言處理綜論》,作者都是NLP領域的大大牛:斯坦福大學 Dan Jurafsky 教授和科羅拉多大學的 

James H. Martin 教授。這也是我當年的入門書,我讀過這本書的中文版(翻譯自第一版英文版)和英文版第二版,該書第三版正在撰寫中,作者已經完成了不少章節的撰寫,所完成的章節均可下載:Speech and Language Processing (3rd ed. draft)。從章節來看,第三版增加了不少和NLP相關的深度學習的章節,內容和篇幅相對於之前有了更多的更新:

Chapter Slides Relation to 2nd ed.
1: Introduction [Ch. 1 in 2nd ed.]
3: Finite State Transducers
5: Spelling [pptx] [pdf] [expanded from pieces in Ch. 5 in 2nd ed.]
8: Neural Nets and Neural Language Models
13: Statistical Parsing
15: Vector [pptx] [pdf] [expanded from parts of Ch. 19 and 20 in 2nd ed.]
16: Dense Vector [pptx] [pdf] [new in this edition]
17: Intro, Sim [pptx] [
pdf
]
WSD [pptx] [pdf]
[expanded from parts of Ch. 19 and 20 in 2nd ed.]
19: The Representation of Sentence Meaning
20: Computational Semantics
22: SRL [pptx] [pdf]
Select [pptx] [pdf]
[expanded from parts of Ch. 19 and 20 in 2nd ed.]
23: Neural Models of Sentence Meaning (RNN, LSTM, CNN, etc.)
24: Coreference Resolution and Entity Linking
25: Discourse Coherence
26: Seq2seq Models and Summarization
27: Machine Translation
29: Conversational Agents
30: Speech Recognition
31: Speech Synthesis

另外該書作者之一斯坦福大學 Dan Jurafsky 教授曾經在Coursera上開設過一門自然語言處理課程:Natural Language Processing,該課程目前貌似在Coursera新課程平臺上已經查詢不到,不過我們在百度網盤上做了一個備份,包括該課程視訊和該書的第二版英文,兩個一起看,效果更佳:

對於一直尋找如何入門自然語言處理的同學來說,先把這本書和這套課程拿下來才是一個必要條件,萬事先有個基礎。

同時歡迎大家關注我們的公眾號:NLPJob,回覆"slp"獲取該書和課程最新資源。