1. 程式人生 > >檢視tensorflow 模型檔案的節點資訊

檢視tensorflow 模型檔案的節點資訊

直接在程式碼中列印tensor的名稱資訊,比如:

x=tf.layers.Input(shape=[32])print(x)y=tf.layers.dense(x,16,activation=tf.nn.softmax)print(y)輸出:Tensor("input_layer_1:0",shape=(?,32),dtype=float32)Tensor("dense/Softmax:0",shape=(?,16),dtype=float32)

1、檢視checkpoint 節點資訊: 程式碼如下

from tensorflow.python import pywrap_tensorflow
import os
checkpoint_path = os.path.join( "checkpoint-00454721")
reader = pywrap_tensorflow.NewCheckpointReader(checkpoint_path)
var_to_shape_map = reader.get_variable_to_shape_map()
for key in var_to_shape_map:
        print("tensor_name: ", key)

        #print(reader.get_tensor(key))

2、檢視checkpoint 節點資訊:呼叫tensorflow 工具,命令如下:

inspect_checkpoint.py --file_name=checkpoint-00454721

以下轉自:https://www.cnblogs.com/bonelee/p/8462578.html

檢視tensorflow pb模型檔案的節點資訊:

複製程式碼
import tensorflow as tf
with tf.Session() as sess:
    with open('./quantized_model.pb', 'rb') as f:
        graph_def 
= tf.GraphDef() graph_def.ParseFromString(f.read()) print graph_def
複製程式碼

效果:

複製程式碼
# ...
node {
  name: "FullyConnected/BiasAdd"
  op: "BiasAdd"
  input: "FullyConnected/MatMul"
  input: "FullyConnected/b/read"
  attr {
    key: "T"
    value {
      type: DT_FLOAT
    }
  }
  attr {
    key: 
"data_format" value { s: "NHWC" } } } node { name: "FullyConnected/Softmax" op: "Softmax" input: "FullyConnected/BiasAdd" attr { key: "T" value { type: DT_FLOAT } } } library { }
複製程式碼

參考:https://tang.su/2017/01/export-TensorFlow-network/

https://github.com/tensorflow/tensorflow/issues/15689

一些核心程式碼:

複製程式碼
import tensorflow as tf
with tf.Session() as sess:
    with open('./graph.pb', 'rb') as f:
        graph_def = tf.GraphDef()
        graph_def.ParseFromString(f.read()) 
        print graph_def
        output = tf.import_graph_def(graph_def, return_elements=['out:0']) 
        print(sess.run(output))
複製程式碼

This is part of my Tensorflow frozen graph, I have named the input and output nodes.

>>> g.ParseFromString(open('frozen_graph.pb','rb').read())
>>> g
node {
  name: "input"
  op: "Placeholder"
  attr {
    key: "dtype"
    value {
      type: DT_FLOAT
    }
  }
  attr {
    key: "shape"
    value {
      shape {
        dim {
          size: -1
        }
        dim {
          size: 68
        }
      }
    }
  }
}
...
node {
  name: "output"
  op: "Softmax"
  input: "add"
  attr {
    key: "T"
    value {
      type: DT_FLOAT
    }
  }
}

I ran this model by the following code
(CELL is name of directory where my file is located)

final String MODEL_FILE = "file:///android_asset/" + CELL + "/optimized_graph.pb" ;
final String INPUT_NODE = "input" ;
final String OUTPUT_NODE = "output" ;
final int[] INPUT_SIZE = {1,68} ;
float[] RESULT = new float[8];

inferenceInterface = new TensorFlowInferenceInterface();
inferenceInterface.initializeTensorFlow(getAssets(),MODEL_FILE) ;
inferenceInterface.fillNodeFloat(INPUT_NODE,INPUT_SIZE,input);

and finally

inferenceInterface.readNodeFloat(OUTPUT_NODE,RESULT);