怎麼樣用AIC和SC準則判斷滯…
阿新 • • 發佈:2019-01-03
怎麼樣用AIC和SC準則判斷滯後階數
ADF Test Statistic -0.480303 1% Critical Value* -4.7315
5% Critical Value -3.7611
10% Critical Value -3.3228
*MacKinnon critical values for rejection of hypothesis of a unit root. Augmented Dickey-Fuller Test Equation
Dependent Variable: D(Y)
Method: Least Squares
Date: 06/19/07
Time: 21:45
Sample(adjusted): 1991 2005
Included observations: 15 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob.
Y(-1) -0.090587 0.188604 -0.480303 0.6404
D(Y(-1)) 0.915838 0.295206 3.102368 0.0101
C -434.3619 2725.411 -0.159375 0.8763
@TREND(1989) 1076.342 1624.113 0.662726 0.5212
R-squared 0.791251 Mean dependent var 11015.85
Adjusted R-squared 0.734320 S.D. dependent var 6398.144
S.E. of regression 3297.871 Akaike info criterion 19.26312
Sum squared resid 1.20E+08 Schwarz criterion 19.45193
Log likelihood -140.4734 F-statistic 13.89831
Durbin-Watson stat 1.217269 Prob(F-statistic) 0.000464
首先在回答你的問題前,我想說你的模型是不平穩的,有單位根!
怎麼用用AIC和SC準則判斷滯後階數?
多取幾次滯後建立模型,比如分別建立一階、二階、……模型,各模型都會有一個AIC和SC統計量,取最小的統計量所對應的階數。
只需考慮AIC和SC統計量之中的一個就可以了!通常用AIC!
Akaike info criterion 19.26312這個就是AIC的值是嗎?Schwarz criterion 19.45193這個就是SC的值是嗎?
AIC和SC準則並不是嚴格越小越好
Eviews3.1裡面是沒有自動提供推薦滯後階數,需要人工輸入;但是在Eviews6裡面確實自動提供的,但是並不是按照最小AIC或SC準則的,AIC或SC準則越小,可能要求滯後P值越大,但是P值越大,導致資料序列損失度越大,所以肯定Eviews6做了處理,就是不知道做了什麼處理。
而且我研究發現Eviews早期版本,ADF檢驗過程中AIC準則和SC準則都與Eviews6版本結果有些差距,問題出在模型形式的選擇上(3種,帶常數項、趨勢項、不帶等等),也就是AIC或者SC準則定義中引數k,代表要估計引數個數上,早期Eviews版本沒考慮這些多餘的引數,導致結果有少許差別,但不影響P的選擇。
至於Eviews6中階數是自動推薦的,但是有個Maximum選項可供輸入(程式會提供一個預設值),其中Maximum=[12*(T/100)^0.25],在Maximum值變動以後,程式推薦的P值也會變動,但是這個P值絕對不是按照AIC或者SC準則推薦的在小於Maximum範圍內的最小值對應的P值,這裡我就一直感到困惑,希望誰能給指導一下!
我的結果在這:
Maximum=10預設,選擇帶常數項和趨勢項情況:
AIC準則下Eviews6:
Null Hypothesis: CCC has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 5 (Automatic based on AIC, MAXLAG=10)
t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -3.208100 0.0941
Test critical values: 1% level -4.144584
5% level -3.498692
10% level -3.178578
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation
Dependent Variable: D(CCC)
Method: Least Squares
Date: 08/22/08 Time: 10:46
Sample (adjusted): 7 58
Included observations: 52 after adjustments
Coefficient Std. Error t-Statistic Prob.
CCC(-1) -0.039917 0.012443 -3.208100 0.0025
D(CCC(-1)) 2.234078 0.143978 15.51677 0.0000
D(CCC(-2)) -2.163752 0.359186 -6.024037 0.0000
D(CCC(-3)) 1.220026 0.454195 2.686126 0.0102
D(CCC(-4)) -0.406455 0.359970 -1.129135 0.2650
D(CCC(-5)) 0.187012 0.161019 1.161427 0.2517
C 4.338536 1.364059 3.180607 0.0027
@TREND(1) -0.001814 0.001293 -1.402702 0.1677
R-squared 0.976187 Mean dependent var 0.005962
Adjusted R-squared 0.972398 S.D. dependent var 0.512216
S.E. of regression 0.085098 Akaike info criterion -1.949385
Sum squared resid 0.318635 Schwarz criterion -1.649193
Log likelihood 58.68401 Hannan-Quinn criter. -1.834299
F-statistic 257.6749 Durbin-Watson stat 1.735674
Prob(F-statistic) 0.000000
SC準則,Evews6:
Null Hypothesis: CCC has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 3 (Automatic based on SIC, MAXLAG=10)
t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -4.135397 0.0101
Test critical values: 1% level -4.137279
5% level -3.495295
10% level -3.176618
*MacKinnon (1996) one-sided p-values.
ADF Test Statistic -0.480303 1% Critical Value* -4.7315
5% Critical Value -3.7611
10% Critical Value -3.3228
*MacKinnon critical values for rejection of hypothesis of a unit root. Augmented Dickey-Fuller Test Equation
Dependent Variable: D(Y)
Method: Least Squares
Date: 06/19/07
Time: 21:45
Sample(adjusted): 1991 2005
Included observations: 15 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob.
Y(-1) -0.090587 0.188604 -0.480303 0.6404
D(Y(-1)) 0.915838 0.295206 3.102368 0.0101
C -434.3619 2725.411 -0.159375 0.8763
@TREND(1989) 1076.342 1624.113 0.662726 0.5212
R-squared 0.791251 Mean dependent var 11015.85
Adjusted R-squared 0.734320 S.D. dependent var 6398.144
S.E. of regression 3297.871 Akaike info criterion 19.26312
Sum squared resid 1.20E+08 Schwarz criterion 19.45193
Log likelihood -140.4734 F-statistic 13.89831
Durbin-Watson stat 1.217269 Prob(F-statistic) 0.000464
首先在回答你的問題前,我想說你的模型是不平穩的,有單位根!
怎麼用用AIC和SC準則判斷滯後階數?
多取幾次滯後建立模型,比如分別建立一階、二階、……模型,各模型都會有一個AIC和SC統計量,取最小的統計量所對應的階數。
只需考慮AIC和SC統計量之中的一個就可以了!通常用AIC!
Akaike info criterion 19.26312這個就是AIC的值是嗎?Schwarz criterion 19.45193這個就是SC的值是嗎?
AIC和SC準則並不是嚴格越小越好
Eviews3.1裡面是沒有自動提供推薦滯後階數,需要人工輸入;但是在Eviews6裡面確實自動提供的,但是並不是按照最小AIC或SC準則的,AIC或SC準則越小,可能要求滯後P值越大,但是P值越大,導致資料序列損失度越大,所以肯定Eviews6做了處理,就是不知道做了什麼處理。
而且我研究發現Eviews早期版本,ADF檢驗過程中AIC準則和SC準則都與Eviews6版本結果有些差距,問題出在模型形式的選擇上(3種,帶常數項、趨勢項、不帶等等),也就是AIC或者SC準則定義中引數k,代表要估計引數個數上,早期Eviews版本沒考慮這些多餘的引數,導致結果有少許差別,但不影響P的選擇。
至於Eviews6中階數是自動推薦的,但是有個Maximum選項可供輸入(程式會提供一個預設值),其中Maximum=[12*(T/100)^0.25],在Maximum值變動以後,程式推薦的P值也會變動,但是這個P值絕對不是按照AIC或者SC準則推薦的在小於Maximum範圍內的最小值對應的P值,這裡我就一直感到困惑,希望誰能給指導一下!
我的結果在這:
Maximum=10預設,選擇帶常數項和趨勢項情況:
AIC準則下Eviews6:
Null Hypothesis: CCC has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 5 (Automatic based on AIC, MAXLAG=10)
t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -3.208100 0.0941
Test critical values: 1% level -4.144584
5% level -3.498692
10% level -3.178578
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation
Dependent Variable: D(CCC)
Method: Least Squares
Date: 08/22/08 Time: 10:46
Sample (adjusted): 7 58
Included observations: 52 after adjustments
Coefficient Std. Error t-Statistic Prob.
CCC(-1) -0.039917 0.012443 -3.208100 0.0025
D(CCC(-1)) 2.234078 0.143978 15.51677 0.0000
D(CCC(-2)) -2.163752 0.359186 -6.024037 0.0000
D(CCC(-3)) 1.220026 0.454195 2.686126 0.0102
D(CCC(-4)) -0.406455 0.359970 -1.129135 0.2650
D(CCC(-5)) 0.187012 0.161019 1.161427 0.2517
C 4.338536 1.364059 3.180607 0.0027
@TREND(1) -0.001814 0.001293 -1.402702 0.1677
R-squared 0.976187 Mean dependent var 0.005962
Adjusted R-squared 0.972398 S.D. dependent var 0.512216
S.E. of regression 0.085098 Akaike info criterion -1.949385
Sum squared resid 0.318635 Schwarz criterion -1.649193
Log likelihood 58.68401 Hannan-Quinn criter. -1.834299
F-statistic 257.6749 Durbin-Watson stat 1.735674
Prob(F-statistic) 0.000000
SC準則,Evews6:
Null Hypothesis: CCC has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 3 (Automatic based on SIC, MAXLAG=10)
t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -4.135397 0.0101
Test critical values: 1% level -4.137279
5% level -3.495295
10% level -3.176618
*MacKinnon (1996) one-sided p-values.