1. 程式人生 > >伺服器caffe安裝配置檔案

伺服器caffe安裝配置檔案

本篇部落格記錄我在伺服器上第一次搭建caffe環境所遇到得一些問題以及解決辦法。
伺服器環境配置:CUDA Version 9.0.103
        python2.7
        opencv-python 3.4.3.18
1. 在安裝caffe之前,伺服器已經將相關依賴庫都編譯安裝好了,因此,免去很多事情,直接在我個人主目錄下下載原始碼:

git clone https://github.com/BVLC/caffe.git

2. 配置Makefile.config

cp Makefile.config.example Makefile.config
vi Makefile.config

配置檔案如下
Makefile.config

## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!

# cuDNN acceleration switch (uncomment to build with cuDNN).
USE_CUDNN := 1 

# CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := 1

# uncomment to disable IO dependencies and corresponding data layers
USE_OPENCV := 1
# USE_LEVELDB := 0
USE_LMDB := 1
# This code is taken from https://github.com/sh1r0/caffe-android-lib
#USE_HDF5 := 0

# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
#       You should not set this flag if you will be reading LMDBs with any
#       possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1

# Uncomment if you're using OpenCV 3
OPENCV_VERSION := 3

# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++

# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr

# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
# For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_30,code=sm_30 \     #此處去掉了前兩行,因為cuda9.0不支援
                -gencode arch=compute_35,code=sm_35 \
                -gencode arch=compute_50,code=sm_50 \
                -gencode arch=compute_52,code=sm_52 \
                -gencode arch=compute_60,code=sm_60 \
                -gencode arch=compute_61,code=sm_61 \
                -gencode arch=compute_61,code=compute_61

# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas

# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib

# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app

# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
PYTHON_INCLUDE := /usr/include/python2.7 \
                /usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
#ANACONDA_HOME := /AI/Software/anaconda2
#PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
                  $(ANACONDA_HOME)/include/python2.7 \
                  $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include

# Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
#                 /usr/lib/python3.5/dist-packages/numpy/core/include

# We need to be able to find libpythonX.X.so or .dylib.
PYTHON_LIB := /usr/lib
# PYTHON_LIB := $(ANACONDA_HOME)/lib

# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib

# Uncomment to support layers written in Python (will link against Python libs)
WITH_PYTHON_LAYER := 1

# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial/

# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib

# NCCL acceleration switch (uncomment to build with NCCL)
# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
# USE_NCCL := 1

# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1

# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute

# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1

# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0

# enable pretty build (comment to see full commands)
Q ?= @
LINKFLAGS := -Wl,-rpath,/AI/Software/anaconda2/lib  #建立連結,指定一些依賴庫為anaconda目錄下

3. 配置Makefile檔案

vi Makefile

將這兩行修改為指定版本的protoc

$(Q)protoc --proto_path=$(PROTO_SRC_DIR) --cpp_out=$(PROTO_BUILD_DIR) $&lt;
$(Q)protoc --proto_path=$(PROTO_SRC_DIR) --python_out=$(PY_PROTO_BUILD_DIR) $&lt;

修改為

$(Q)/usr/bin/protoc --proto_path=$(PROTO_SRC_DIR) --cpp_out=$(PROTO_BUILD_DIR) $&lt;
$(Q)/usr/bin/protoc --proto_path=$(PROTO_SRC_DIR) --python_out=$(PY_PROTO_BUILD_DIR) $&lt;

這一行

NVCCFLAGS +=-ccbin=$(CXX) -Xcompiler-fPIC $(COMMON_FLAGS)

替換為(我沒有修改,但是看很多部落格上面都有修改)

NVCCFLAGS += -D_FORCE_INLINES -ccbin=$(CXX) -Xcompiler -fPIC $(COMMON_FLAGS

4. 編譯執行

make clean
make all -j32    #-j32為執行緒並行引數,根據自己的電腦修改,-j4,-j8,-j16等等

進行測試

make runtest -j32

若出現的結果如下則表示測試通過
在這裡插入圖片描述
編譯pycaffe

make pycaffe -j32

測試caffe是否安裝成功

cd python
python
import caffe
print dir(caffe)

出現如下結果則表明安裝成功
在這裡插入圖片描述

5. 配置環境變數,以便在任何目錄下python均可以呼叫caffe

vi ~/.bashrc
# 加入這一行export PYTHONPATH=~/caffe/python:$PYTHONPATH
source ~/.bashrc

問題總結:

  1. build_release/lib/libcaffe.so:對‘cv::imdecode(cv::_InputArray const&, int)’未定義的引用
    修改Makefile:
    LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_serial_hl hdf5_serial matio opencv_core opencv_highgui opencv_imgproc opencv_imgcodecs
  2. /XX/anaconda2/lib/libpng16.so.16:對‘[email protected]_1.2.9’未定義的引用
    在Makefile.config下加入這一行LINKFLAGS := -Wl,-rpath,/AI/Software/anaconda2/lib
  3. “fatal error: hdf5.h: 沒有那個檔案或目錄”解決方法
    修改INCLUDE_DIRS和LIBRARY_DIRS為如下
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial/

修改Makefile將如下第一行程式碼修改為第二行

LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_hl hdf5
LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_serial_hl hdf5_serial
  1. F1129 14:29:10.120764 48271 syncedmem.hpp:22] Check failed: error == cudaSuccess (46 vs. 0) all CUDA-capable devices are busy or unavailable
    Makefile:542: recipe for target ‘runtest’ failedMakefile:542: recipe for target ‘runtest’ failed
    在跑測試程式時報錯,原因是沒有空閒的顯示卡可供使用,此時檢查是否有空閒下的顯示卡。
  2. 在編譯時顯示protobuf版本不對,caffe需要的版本為2.6,而預設路徑指定版本為anaconda3.0以上的版本
    參照知乎上面的解答,可以在Makefile中指定路徑,首先自行安裝一個2.6版本的protobuf,然後將Makefile中第649和654行
$(Q)protoc --proto_path=$(PROTO_SRC_DIR) --cpp_out=$(PROTO_BUILD_DIR) $&lt;
$(Q)protoc --proto_path=$(PROTO_SRC_DIR) --python_out=$(PY_PROTO_BUILD_DIR) $&lt;

修改為

$(Q)/usr/bin/protoc --proto_path=$(PROTO_SRC_DIR) --cpp_out=$(PROTO_BUILD_DIR) $&lt;
$(Q)/usr/bin/protoc --proto_path=$(PROTO_SRC_DIR) --python_out=$(PY_PROTO_BUILD_DIR) $&lt;

參考連結:
https://github.com/BVLC/caffe/issues
https://blog.csdn.net/hhhuua/article/details/80436160
https://blog.csdn.net/DonatelloBZero/article/details/51304162
https://blog.csdn.net/m0_37407756/article/details/70789271