二、stl ,模擬,貪心等 [Cloned] J
原題:
One measure of ``unsortedness'' in a sequence is the number of pairs of entries that are out of order with respect to each other. For instance, in the letter sequence ``DAABEC'', this measure is 5, since D is greater than four letters to its right and E is greater than one letter to its right. This measure is called the number of inversions in the sequence. The sequence ``AACEDGG'' has only one inversion (E and D)---it is nearly sorted---while the sequence ``ZWQM'' has 6 inversions (it is as unsorted as can be---exactly the reverse of sorted).
You are responsible for cataloguing a sequence of DNA strings (sequences containing only the four letters A, C, G, and T). However, you want to catalog them, not in alphabetical order, but rather in order of ``sortedness'', from ``most sorted'' to ``least sorted''. All the strings are of the same length.
題意:
對幾串字串進行逆序數大小的排序,逆序數就是數學概念上的逆序數轉化到字母上,例如序列中C在A的前邊那麼逆序數加一。給出的資料只是四種鹼基ACGT,然後按照逆序數從小到大進行排序。
題解:
先定義一個結構體包括一個字串和它的逆序數值,然後一個compare函式對結構體陣列進行排序。重點在於怎麼求一個字串的逆序數,我借鑑了一篇部落格的方法,定義一個四個位置的陣列,然後對字串從後到前進行搜尋,如果是A,那麼陣列的三個位置都加1,因為之前無論出現剩下的哪三個字母逆序數都得加一,如果是C,那麼對應G和T的陣列加一,以此類推,在加陣列的同時統計各個字母對應的逆序數。
程式碼:AC
#include<iostream> #include<cstring> #include<algorithm> using namespace std; typedef struct { char dna[120]; int num; }DNA; DNA A[120]; bool compare(DNA a,DNA b) { return a.num<b.num; } int count(char str[],int len) { int a[4]; memset(a,0,sizeof(a)); int sum=0,i; for(i=len-1;i>=0;i--) { switch(str[i]) { case'A': { a[1]++; a[2]++; a[3]++; break; } case'C': { a[2]++; a[3]++; sum+=a[1]; break; } case'G': { a[3]++; sum+=a[2]; break; } case'T': sum+=a[3]; } } return sum; } int main() { int n,m,i; cin>>n>>m; for(i=0;i<m;i++) { cin>>A[i].dna; A[i].num=count(A[i].dna,n); } sort(A,A+m,compare); for(i=0;i<m;i++) cout<<A[i].dna<<endl; return 0; }