Java基礎【面向物件 介面 多型】
第11天面向物件
今日內容介紹
介面
多型
第1章 介面
1.1 介面概念
介面是功能的集合,同樣可看做是一種資料型別,是比抽象類更為抽象的”類”。
介面只描述所應該具備的方法,並沒有具體實現,具體的實現由介面的實現類(相當於介面的子類)來完成。這樣將功能的定義與實現分離,優化了程式設計。
請記住:一切事物均有功能,即一切事物均有介面。
1.2 介面的定義
與定義類的class不同,介面定義時需要使用interface關鍵字。
定義介面所在的仍為.java檔案,雖然宣告時使用的為interface關鍵字的編譯後仍然會產生.class檔案。這點可以讓我們將介面看做是一種只包含了功能宣告的特殊類。
定義格式:
public interface 介面名 {
抽象方法1;
抽象方法2;
抽象方法3;
}
使用interface代替了原來的class,其他步驟與定義類相同:
介面中的方法均為公共訪問的抽象方法
介面中無法定義普通的成員變數
1.3 類實現介面
1》類與介面的關係為實現關係,即類實現介面。實現的動作類似繼承,只是關鍵字不同,實現使用implements。
2》其他類(實現類)實現介面後,就相當於宣告:”我應該具備這個介面中的功能”。實現類仍然需要重寫方法以實現具體的功能。
格式:
class 類 implements 介面 { 重寫介面中方法 }
在類實現介面後,該類就會將介面中的抽象方法繼承過來,此時該類需要重寫該抽象方法,完成具體的邏輯。
介面中定義功能,當需要具有該功能時,可以讓類實現該介面,只聲明瞭應該具備該方法,是功能的宣告。
在具體實現類中重寫方法,實現功能,是方法的具體實現。
於是,通過以上兩個動作將功能的宣告與實現便分開了。(此時請重新思考:類是現實事物的描述,介面是功能的集合。)
1.4 介面中成員的特點
1、介面中可以定義變數,但是變數必須有固定的修飾符修飾,public static final 所以介面中的變數也稱之為常量,其值不能改變。後面我們會講解static與final關鍵字
2、介面中可以定義方法,方法也有固定的修飾符,public abstract
3、介面不可以建立物件。
4、子類必須覆蓋掉介面中所有的抽象方法後,子類才可以例項化。否則子類是一個抽象類。
interface Demo { ///定義一個名稱為Demo的介面。
public static final int NUM = 3;// NUM的值不能改變
public abstract void show1();
public abstract void show2();
}
//定義子類去覆蓋介面中的方法。類與介面之間的關係是 實現。通過 關鍵字 implements
class DemoImpl implements Demo { //子類實現Demo介面。
//重寫介面中的方法。
public void show1(){}
public void show2(){}
}
1.5 介面的多實現
瞭解了介面的特點後,那麼想想為什麼要定義介面,使用抽象類描述也沒有問題,介面到底有啥用呢?
介面最重要的體現:解決多繼承的弊端。將多繼承這種機制在java中通過多實現完成了。
interface Fu1
{
void show1();
}
interface Fu2
{
void show2();
}
class Zi implements Fu1,Fu2// 多實現。同時實現多個介面。
{
public void show1(){}
public void show2(){}
}
怎麼解決多繼承的弊端呢?
弊端:多繼承時,當多個父類中有相同功能時,子類呼叫會產生不確定性。
其實核心原因就是在於多繼承父類中功能有主體,而導致呼叫執行時,不確定執行哪個主體內容。
為什麼多實現能解決了呢?
因為介面中的功能都沒有方法體,由子類來明確。
1.6 類繼承類同時實現介面
介面和類之間可以通過實現產生關係,同時也學習了類與類之間可以通過繼承產生關係。當一個類已經繼承了一個父類,它又需要擴充套件額外的功能,這時介面就派上用場了。
子類通過繼承父類擴充套件功能,通過繼承擴充套件的功能都是子類應該具備的基礎功能。如果子類想要繼續擴充套件其他類中的功能呢?這時通過實現介面來完成。
class Fu {
public void show(){}
}
interface Inter {
pulbic abstract void show1();
}
class Zi extends Fu implements Inter {
public void show1() {
}
}
介面的出現避免了單繼承的侷限性。父類中定義的事物的基本功能。介面中定義的事物的擴充套件功能。
1.7 介面的多繼承
學習類的時候,知道類與類之間可以通過繼承產生關係,介面和類之間可以通過實現產生關係,那麼介面與介面之間會有什麼關係。
多個介面之間可以使用extends進行繼承。
interface Fu1{
void show();
}
interface Fu2{
void show1();
}
interface Fu3{
void show2();
}
interface Zi extends Fu1,Fu2,Fu3{
void show3();
}
在開發中如果多個介面中存在相同方法,這時若有個類實現了這些介面,那麼就要實現介面中的方法,由於介面中的方法是抽象方法,子類實現後也不會發生呼叫的不確定性。
1.8 介面的思想
前面學習了介面的程式碼體現,現在來學習介面的思想,接下里從生活中的例子進行說明。
舉例:我們都知道電腦上留有很多個插口,而這些插口可以插入相應的裝置,這些裝置為什麼能插在上面呢?主要原因是這些裝置在生產的時候符合了這個插口的使用規則,否則將無法插入介面中,更無法使用。發現這個插口的出現讓我們使用更多的裝置。
總結:介面在開發中的它好處
1、介面的出現擴充套件了功能。
2、介面其實就是暴漏出來的規則。
3、介面的出現降低了耦合性,即裝置與裝置之間實現瞭解耦。
介面的出現方便後期使用和維護,一方是在使用介面(如電腦),一方在實現介面(插在插口上的裝置)。例如:筆記本使用這個規則(介面),電腦外圍裝置實現這個規則(介面)。
1.9 介面和抽象的區別
明白了介面思想和介面的用法後,介面和抽象類的區別是什麼呢?介面在生活體現也基本掌握,那在程式中介面是如何體現的呢?
通過例項進行分析和程式碼演示抽象類和介面的用法。
1、舉例:
犬: 行為:
吼叫;
吃飯;
緝毒犬: 行為:
吼叫;
吃飯;
緝毒;
2、思考:
由於犬分為很多種類,他們吼叫和吃飯的方式不一樣,在描述的時候不能具體化,也就是吼叫和吃飯的行為不能明確。當描述行為時,行為的具體動作不能明確,這時,可以將這個行為寫為抽象行為,那麼這個類也就是抽象類。
可是當緝毒犬有其他額外功能時,而這個功能並不在這個事物的體系中。這時可以讓緝毒犬具備犬科自身特點的同時也有其他額外功能,可以將這個額外功能定義介面中。
如下程式碼演示:
interface 緝毒{
public abstract void 緝毒();
}
//定義犬科的這個提醒的共性功能
abstract class 犬科{
public abstract void 吃飯();
public abstract void 吼叫();
}
// 緝毒犬屬於犬科一種,讓其繼承犬科,獲取的犬科的特性,
//由於緝毒犬具有緝毒功能,那麼它只要實現緝毒介面即可,這樣即保證緝毒犬具備犬科的特性,也擁有了緝毒的功能
class 緝毒犬 extends 犬科 implements 緝毒{
public void 緝毒() {
}
void 吃飯() {
}
void 吼叫() {
}
}
class 緝毒豬 implements 緝毒{
public void 緝毒() {
}
}
3、通過上面的例子總結介面和抽象類的區別:
相同點:
都位於繼承的頂端,用於被其他類實現或繼承;
都不能直接例項化物件;
都包含抽象方法,其子類都必須覆寫這些抽象方法;
區別:
抽象類為部分方法提供實現,避免子類重複實現這些方法,提高程式碼重用性;介面只能包含抽象方法;
一個類只能繼承一個直接父類(可能是抽象類),卻可以實現多個介面;(介面彌補了Java的單繼承)
抽象類是這個事物中應該具備的你內容, 繼承體系是一種 is…a關係
介面是這個事物中的額外內容,繼承體系是一種 like…a關係
二者的選用:
優先選用介面,儘量少用抽象類;
需要定義子類的行為,又要為子類提供共性功能時才選用抽象類;
第2章 多型
2.1 多型概述
多型是繼封裝、繼承之後,面向物件的第三大特性。
現實事物經常會體現出多種形態,如學生,學生是人的一種,則一個具體的同學張三既是學生也是人,即出現兩種形態。
Java作為面向物件的語言,同樣可以描述一個事物的多種形態。如Student類繼承了Person類,一個Student的物件便既是Student,又是Person。
Java中多型的程式碼體現在一個子類物件(實現類物件)既可以給這個子類(實現類物件)引用變數賦值,又可以給這個子類(實現類物件)的父類(介面)變數賦值。
如Student類可以為Person類的子類。那麼一個Student物件既可以賦值給一個Student型別的引用,也可以賦值給一個Person型別的引用。
最終多型體現為父類引用變數可以指向子類物件。
多型的前提是必須有子父類關係或者類實現介面關係,否則無法完成多型。
在使用多型後的父類引用變數呼叫方法時,會呼叫子類重寫後的方法。
2.2 多型的定義與使用格式
多型的定義格式:就是父類的引用變數指向子類物件
父類型別 變數名 = new 子類型別();
變數名.方法名();
普通類多型定義的格式
父類 變數名 = new 子類();
如:
class Fu {}
class Zi extends Fu {}
//類的多型使用
Fu f = new Zi();**
抽象類多型定義的格式
抽象類 變數名 = new 抽象類子類();
如: abstract class Fu {
public abstract void method();
}
class Zi extends Fu {
public void method(){
System.out.println(“重寫父類抽象方法”);
}
}
//類的多型使用
Fu fu= new Zi();
介面多型定義的格式
介面 變數名 = new 介面實現類();
如:
interface Fu {
public abstract void method();
}
class Zi implements Fu {
public void method(){
System.out.println(“重寫介面抽象方法”);
}
}
//介面的多型使用
Fu fu = new Zi();
注意事項
同一個父類的方法會被不同的子類重寫。在呼叫方法時,呼叫的為各個子類重寫後的方法。
如
Person p1 = new Student();
Person p2 = new Teacher();
p1.work(); //p1會呼叫Student類中重寫的work方法
p2.work(); //p2會呼叫Teacher類中重寫的work方法
當變數名指向不同的子類物件時,由於每個子類重寫父類方法的內容不同,所以會呼叫不同的方法。
2.3 多型-成員的特點
掌握了多型的基本使用後,那麼多型出現後類的成員有啥變化呢?前面學習繼承時,我們知道子父類之間成員變數有了自己的特定變化,那麼當多型出現後,成員變數在使用上有沒有變化呢?
多型出現後會導致子父類中的成員變數有微弱的變化。看如下程式碼
class Fu {
int num = 4;
}
class Zi extends Fu {
int num = 5;
}
class Demo {
public static void main(String[] args) {
Fu f = new Zi();
System.out.println(f.num);
Zi z = new Zi();
System.out.println(z.num);
}
}
多型成員變數
當子父類中出現同名的成員變數時,多型呼叫該變數時:
編譯時期:參考的是引用型變數所屬的類中是否有被呼叫的成員變數。沒有,編譯失敗。
執行時期:也是呼叫引用型變數所屬的類中的成員變數。
簡單記:編譯和執行都參考等號的左邊。編譯執行看左邊。
多型出現後會導致子父類中的成員方法有微弱的變化。看如下程式碼
class Fu {
int num = 4;
void show() {
System.out.println("Fu show num");
}
}
class Zi extends Fu {
int num = 5;
void show() {
System.out.println("Zi show num");
}
}
class Demo {
public static void main(String[] args) {
Fu f = new Zi();
f.show();
}
}
多型成員方法
編譯時期:參考引用變數所屬的類,如果沒有類中沒有呼叫的方法,編譯失敗。
執行時期:參考引用變數所指的物件所屬的類,並執行物件所屬類中的成員方法。
簡而言之:編譯看左邊,執行看右邊。
2.4 instanceof關鍵字
我們可以通過instanceof關鍵字來判斷某個物件是否屬於某種資料型別。如學生的物件屬於學生類,學生的物件也屬於人類。
使用格式:
boolean b = 物件 instanceof 資料型別;
如
Person p1 = new Student(); // 前提條件,學生類已經繼承了人類
boolean flag = p1 instanceof Student; //flag結果為true
boolean flag2 = p2 instanceof Teacher; //flag結果為false
2.5 多型-轉型
多型的轉型分為向上轉型與向下轉型兩種:
向上轉型:當有子類物件賦值給一個父類引用時,便是向上轉型,多型本身就是向上轉型的過程。
使用格式:
父類型別 變數名 = new 子類型別();
如:Person p = new Student();
向下轉型:一個已經向上轉型的子類物件可以使用強制型別轉換的格式,將父類引用轉為子類引用,這個過程是向下轉型。如果是直接建立父類物件,是無法向下轉型的!
使用格式:
子類型別 變數名 = (子類型別) 父類型別的變數;
如:Student stu = (Student) p; //變數p 實際上指向Student物件
2.6 多型的好處與弊端
當父類的引用指向子類物件時,就發生了向上轉型,即把子類型別物件轉成了父類型別。向上轉型的好處是隱藏了子類型別,提高了程式碼的擴充套件性。
但向上轉型也有弊端,只能使用父類共性的內容,而無法使用子類特有功能,功能有限制。看如下程式碼
//描述動物類,並抽取共性eat方法
abstract class Animal {
abstract void eat();
}
// 描述狗類,繼承動物類,重寫eat方法,增加lookHome方法
class Dog extends Animal {
void eat() {
System.out.println("啃骨頭");
}
void lookHome() {
System.out.println("看家");
}
}
// 描述貓類,繼承動物類,重寫eat方法,增加catchMouse方法
class Cat extends Animal {
void eat() {
System.out.println("吃魚");
}
void catchMouse() {
System.out.println("抓老鼠");
}
}
public class Test {
public static void main(String[] args) {
Animal a = new Dog(); //多型形式,建立一個狗物件
a.eat(); // 呼叫物件中的方法,會執行狗類中的eat方法
// a.lookHome();//使用Dog類特有的方法,需要向下轉型,不能直接使用
// 為了使用狗類的lookHome方法,需要向下轉型
// 向下轉型過程中,可能會發生型別轉換的錯誤,即ClassCastException異常
// 那麼,在轉之前需要做健壯性判斷
if( !a instanceof Dog){ // 判斷當前物件是否是Dog型別
System.out.println("型別不匹配,不能轉換");
return;
}
Dog d = (Dog) a; //向下轉型
d.lookHome();//呼叫狗類的lookHome方法
}
}
我們來總結一下:
什麼時候使用向上轉型:
當不需要面對子類型別時,通過提高擴充套件性,或者使用父類的功能就能完成相應的操作,這時就可以使用向上轉型。
如:Animal a = new Dog();
a.eat();
什麼時候使用向下轉型
當要使用子類特有功能時,就需要使用向下轉型。
如:Dog d = (Dog) a; //向下轉型
d.lookHome();//呼叫狗類的lookHome方法
向下轉型的好處:可以使用子類特有功能。
弊端是:需要面對具體的子類物件;在向下轉型時容易發生ClassCastException型別轉換異常。在轉換之前必須做型別判斷。
如:if( !a instanceof Dog){…}
2.7 多型-舉例
我們明確多型使用,以及多型的細節問題後,接下來練習下多型的應用。
畢老師和畢姥爺的故事
/*
描述畢老師和畢姥爺,
畢老師擁有講課和看電影功能
畢姥爺擁有講課和釣魚功能
*/
class 畢姥爺 {
void 講課() {
System.out.println("政治");
}
void 釣魚() {
System.out.println("釣魚");
}
}
// 畢老師繼承了畢姥爺,就有擁有了畢姥爺的講課和釣魚的功能,
// 但畢老師和畢姥爺的講課內容不一樣,因此畢老師要覆蓋畢姥爺的講課功能
class 畢老師 extends 畢姥爺 {
void 講課() {
System.out.println("Java");
}
void 看電影() {
System.out.println("看電影");
}
}
public class Test {
public static void main(String[] args) {
// 多型形式
畢姥爺 a = new 畢老師(); // 向上轉型
a.講課(); // 這裡表象是畢姥爺,其實真正講課的仍然是畢老師,因此呼叫的也是畢老師的講課功能
a.釣魚(); // 這裡表象是畢姥爺,但物件其實是畢老師,而畢老師繼承了畢姥爺,即畢老師也具有釣魚功能
// 當要呼叫畢老師特有的看電影功能時,就必須進行型別轉換
畢老師 b = (畢老師) a; // 向下轉型
b.看電影();
}
}
學習到這裡,面向物件的三大特徵學習完了。
總結下封裝、繼承、多型的作用:
封裝:把物件的屬性與方法的實現細節隱藏,僅對外提供一些公共的訪問方式
繼承:子類會自動擁有父類所有可繼承的屬性和方法。
多型:配合繼承與方法重寫提高了程式碼的複用性與擴充套件性;如果沒有方法重寫,則多型同樣沒有意義。
第3章 膝上型電腦案例
3.1 案例介紹
定義USB介面(具備開啟功能、關閉功能),筆記本要使用USB裝置,即筆記本在生產時需要預留可以插入USB裝置的USB介面,即就是筆記本具備使用USB裝置的功能,但具體是什麼USB裝置,筆記本並不關心,只要符合USB規格的裝置都可以。滑鼠和鍵盤要想能在電腦上使用,那麼滑鼠和鍵盤也必須遵守USB規範,不然滑鼠和鍵盤的生產出來無法使用
進行描述筆記本類,實現筆記本使用USB滑鼠、USB鍵盤
USB介面,包含開啟功能、關閉功能
筆記本類,包含執行功能、關機功能、使用USB裝置功能
滑鼠類,要符合USB介面
鍵盤類,要符合USB介面
3.2 案例需求分析
階段一:
使用筆記本,筆記本有執行功能,需要筆記本物件來執行這個功能
階段二:
想使用一個滑鼠,又有一個功能使用滑鼠,並多了一個滑鼠物件。
階段三:
還想使用一個鍵盤 ,又要多一個功能和一個物件
問題:每多一個功能就需要在筆記本物件中定義一個方法,不爽,程式擴充套件性極差。
降低滑鼠、鍵盤等外圍裝置和膝上型電腦的耦合性。
3.3 實現程式碼步驟
定義滑鼠、鍵盤,筆記本三者之間應該遵守的規則
interface USB {
void open();// 開啟功能
void close();// 關閉功能
}
滑鼠實現USB規則
class Mouse implements USB {
public void open() {
System.out.println("滑鼠開啟");
}
public void close() {
System.out.println("滑鼠關閉");
}
}
鍵盤實現USB規則
class KeyBoard implements USB {
public void open() {
System.out.println("鍵盤開啟");
}
public void close() {
System.out.println("鍵盤關閉");
}
}
定義筆記本
class NoteBook {
// 筆記本開啟執行功能
public void run() {
System.out.println("筆記本執行");
}
// 筆記本使用usb裝置,這時當筆記本物件呼叫這個功能時,必須給其傳遞一個符合USB規則的USB裝置
public void useUSB(USB usb) {
// 判斷是否有USB裝置
if (usb != null) {
usb.open();
usb.close();
}
}
public void shutDown() {
System.out.println("筆記本關閉");
}
}
public class Test {
public static void main(String[] args) {
// 建立筆記本實體物件
NoteBook nb = new NoteBook();
// 筆記本開啟
nb.run();
// 建立滑鼠實體物件
Mouse m = new Mouse();
// 筆記本使用滑鼠
nb.useUSB(m);
// 建立鍵盤實體物件
KeyBoard kb = new KeyBoard();
// 筆記本使用鍵盤
nb.useUSB(kb);
// 筆記本關閉
nb.shutDown();
}
}
第4章 總結
4.1 知識點總結
介面:理解為是一個特殊的抽象類,但它不是類,是一個介面
介面的特點:
1,定義一個介面用interface關鍵字
interface Inter{}
2,一個類實現一個介面,實現implements關鍵字
class Demo implements Inter{}
3, 介面不能直接建立物件
通過多型的方式,由子類來建立物件,介面多型
介面中的成員特點:
成員變數:
只能是final 修飾的常量
預設修飾符: public static final
構造方法:
無
成員方法:
只能是抽象方法
預設修飾符: public abstract
類與類,類與介面,介面與介面之間的關係
類與類之間:繼承關係,單繼承,可以是多層繼承
類與介面之間: 實現關係,單實現,也可以多實現
介面與介面之間:繼承關係,單繼承,也可以是多繼承
Java中的類可以繼承一個父類的同時,實現多個介面
多型:理解為同一種物質的多種形態
多型使用的前提:
1,有繼承或者實現關係
2,要方法重寫
3,父類引用指向子類物件
多型的成員訪問特點:
方法的執行看右邊,其他都看左邊
多型的好處:
提高了程式的擴充套件性
多型的弊端:
不能訪問子類的特有功能
多型的分類
類的多型
abstract class Fu {
public abstract void method();
}
class Zi extends Fu {
public void method(){
System.out.println(“重寫父類抽象方法”);
}
}
//類的多型使用
Fu fu= new Zi();
介面的多型
interface Fu {
public abstract void method();
}
class Zi implements Fu {
public void method(){
System.out.println(“重寫介面抽象方法”);
}
}
//介面的多型使用
Fu fu = new Zi();
instanceof 關鍵字
格式: 物件名 instanceof 類名
返回值: true, false
作用: 判斷指定的物件 是否為 給定類建立的物件