1067 Sort with Swap(0, i) (25 分)(貪心,環)
Given any permutation of the numbers {0, 1, 2,..., N−1}, it is easy to sort them in increasing order. But what if Swap(0, *) is the ONLY operation that is allowed to use? For example, to sort {4, 0, 2, 1, 3} we may apply the swap operations in the following way:
Swap(0, 1) => {4, 1, 2, 0, 3}
Swap(0, 3) => {4, 1, 2, 3, 0}
Swap(0, 4) => {0, 1, 2, 3, 4}
Now you are asked to find the minimum number of swaps need to sort the given permutation of the first N nonnegative integers.
Input Specification:
Each input file contains one test case, which gives a positive N (≤10
5
) followed by a permutation sequence of {0, 1, ..., N
Output Specification:
For each case, simply print in a line the minimum number of swaps need to sort the given permutation.
Sample Input:
10
3 5 7 2 6 4 9 0 8 1
Sample Output:
9
#include <iostream> #include <algorithm> #include <cstdio> #include <vector> #include <stack> #include <queue> #include <cmath> using namespace std; int main() { int n,cnt=0; cin>>n; int a[n],t[n]; for(int i=0;i<n;i++){ cin>>a[i]; } for(int i=0;i<n;i++){ t[a[i]]=i; } for(int i=0;i<n;i++){ if(t[i]!=i){ while(t[0]!=0){ swap(t[0],t[t[0]]); cnt++; } if(t[i]!=i){ swap(t[0],t[i]); cnt++; } } } cout<<cnt; return 0; }