1. 程式人生 > >c++11記憶體模型以及引用計數無鎖棧的實現

c++11記憶體模型以及引用計數無鎖棧的實現

c++11提供了6中記憶體模型:

memory_order_seq_cst(原子操作預設模型)

memory_order_relaxed (沒有順序性的要求

memory_order_release

memory_order_acquire

memory_order_consume

memory_order_acq_rel

提供記憶體模型,記憶體屏障主要是為了解決,編譯器指令重排和快取一致性的問題。

其中memory_order_seq_cst提供了最強的約束,要求多處理器中的操作在所有執行緒中可見,並要求所有執行緒中的執行順序一致。

memory_order_relaxed 沒有執行緒間執行順序的要求,只提供原子操作。

memory_order_release和memory_order_acquire ,指定了順序性要求,其中store語義中使用memory_order_release,load語義中使用memory_order_acquire,可以實現操作的同步性。

memory_order_release和memory_order_consume,指定了順序性要求,但是約束性比memory_order_release和memory_order_acquire要低,只要求相關性同步,其中store語義中使用memory_order_release,load語義中使用memory_order_consume,可以實現操作的同步性。

memory_order_acq_rel一般用在read_modify_write語義中,上面承接memory_order_release語義,本身在進入時有memory_order_acquire語義,操作結束後使用memory_order_release語義,下面承接memory_order_acquire語義。

下面是使用release和acquire語義實現的無鎖引用計數棧

/*************************************************************************
	> File Name: reference_count_lockfreestack.cpp
	> Author: 
	> Mail: 
	> Created Time: Thu 02 Aug 2018 08:30:54 PM CST
 ************************************************************************/

#include<iostream>
#include <atomic>
#include <memory>
#include <thread>

template<class T>
class LockFreeStack
{
    private:
    struct CountNodePtr;
    public:
    LockFreeStack()
    {

    }

    ~LockFreeStack()
    {

    }

    //LockFreeStack(const LockFreeStack&) = delete;
    //LockFreeStack operator=(const LockFreeStack&) = delete;

    void Push( T dta )
    {
        CountNodePtr node;
        node.external_count = 1;
        node.ptr = new Node(dta);

        node.ptr->next = head.load(std::memory_order_relaxed);
        while( !head.compare_exchange_weak( node.ptr->next, node, std::memory_order_release) );
    }

    std::shared_ptr<T> Pop()
    {
        CountNodePtr node = head.load();

        while(1)
        {
            IncreateHeadCount(node);
            Node* ptr = node.ptr;
            if( !ptr )
            {
                return std::shared_ptr<T>();
            }

            if( head.compare_exchange_strong(node, ptr->next, std::memory_order_relaxed) )
            {
                std::shared_ptr<T> res;
                res.swap( ptr->dta );
                const int count = node.external_count - 2;
                if( node.ptr->internal_count.fetch_add(count, std::memory_order_release) == -count )
                {
                    delete ptr;
                }

                return res;
            }
            else if( ptr->internal_count.fetch_sub(1, std::memory_order_relaxed) == 0 )
            {
                ptr->internal_count.load(std::memory_order_acquire);
                delete ptr;
            }
        }
    }


    private:
    void IncreateHeadCount( CountNodePtr& node)
    {
        CountNodePtr new_node;

        do {
            new_node = node;
            ++new_node.external_count;
        }
        while( !head.compare_exchange_strong( node,  new_node, std::memory_order_acquire) );
        node.external_count = new_node.external_count;
    }

    private:
    struct Node;

    struct CountNodePtr
    {
        int external_count;
        Node* ptr;
    };

    struct Node
    {
        std::atomic<int> internal_count;
        std::shared_ptr<T>  dta;
        CountNodePtr next;

        Node( T dta ): dta( std::make_shared<T>(dta) ), internal_count(0)
        {
        }
    };

    std::atomic<CountNodePtr> head;
};

LockFreeStack<int> stack;

void PushStackI()
{
    for(  int i = 0; i < 10; ++i )
    {
        stack.Push( i );
    }
}

void PushStackJ()
{
    for(  int i = 20; i < 30; ++i )
    {
        stack.Push( i );
    }
}

void PopStack()
{
    while( 1 )
    {
        std::shared_ptr<int> ptr = stack.Pop();
        if( ptr )
        std::cout << *ptr << std::endl;
    }
}

int main()
{
    std::thread t1( PushStackI);
    std::thread t2( PushStackJ);
    std::thread t3( PopStack);

    t1.join();
    t2.join();
    t3.join();
    return 0;
}