1. 程式人生 > >二分圖的最大匹配、完美匹配和匈牙利DFS演算法

二分圖的最大匹配、完美匹配和匈牙利DFS演算法

這篇文章講無權二分圖(unweighted bipartite graph)的最大匹配(maximum matching)和完美匹配(perfect matching),以及用於求解匹配的匈牙利DFS演算法(Hungarian Algorithm);不講帶權二分圖的最佳匹配。

二分圖簡單來說,如果圖中點可以被分為兩組,並且使得所有邊都跨越組的邊界,則這就是一個二分圖。準確地說:把一個圖的頂點劃分為兩個不相交集U和V ,使得每一條邊都分別連線UV中的頂點。如果存在這樣的劃分,則此圖為一個二分圖。二分圖的一個等價定義是:不含有「含奇數條邊的環」的圖。圖 1 是一個二分圖。為了清晰,我們以後都把它畫成圖 2 的形式。

匹配在圖論中,一個「匹配」(matching)是一個邊的集合,其中任意兩條邊都沒有公共頂點。例如,圖 3、圖 4 中紅色的邊就是圖 2 的匹配。

Bipartite Graph(1)  Bipartite Graph(2)  Matching  Maximum Matching

我們定義匹配點匹配邊未匹配點非匹配邊,它們的含義非常顯然。例如圖 3 中 1、4、5、7 為匹配點,其他頂點為未匹配點;1-5、4-7為匹配邊,其他邊為非匹配邊。

最大匹配一個圖所有匹配中,所含匹配邊數最多的匹配,稱為這個圖的最大匹配。圖 4 是一個最大匹配,它包含 4 條匹配邊。

完美匹配如果一個圖的某個匹配中,所有的頂點都是匹配點,那麼它就是一個完美匹配。圖 4 是一個完美匹配。顯然,完美匹配一定是最大匹配(完美匹配的任何一個點都已經匹配,新增一條新的匹配邊一定會與已有的匹配邊衝突)。但並非每個圖都存在完美匹配。

舉例來說:如下圖所示,如果在某一對男孩和女孩之間存在相連的邊,就意味著他們彼此喜歡。是否可能讓所有男孩和女孩兩兩配對,使得每對兒都互相喜歡呢?圖論中,這就是完美匹配問題。如果換一個說法:最多有多少互相喜歡的男孩/女孩可以配對兒?這就是最大匹配問題。

0

基本概念講完了。求解最大匹配問題的一個演算法是匈牙利演算法,下面講的概念都為這個演算法服務。

5

交替路從一個未匹配點出發,依次經過非匹配邊、匹配邊、非匹配邊…形成的路徑叫交替路。

增廣路從一個未匹配點出發,走交替路,如果途經另一個未匹配點(出發的點不算),則這條交替路稱為增廣路(agumenting path)。例如,圖 5 中的一條增廣路如圖 6 所示(圖中的匹配點均用紅色標出):

6

增廣路有一個重要特點:非匹配邊比匹配邊多一條。因此,研究增廣路的意義是改進匹配只要把增廣路中的匹配邊和非匹配邊的身份交換即可。由於中間的匹配節點不存在其他相連的匹配邊,所以這樣做不會破壞匹配的性質。交換後,圖中的匹配邊數目比原來多了 1 條。

我們可以通過不停地找增廣路來增加匹配中的匹配邊和匹配點。找不到增廣路時,達到最大匹配(這是增廣路定理)。匈牙利演算法正是這麼做的。

下面給出匈牙利演算法的 DFS版本的程式碼:

//二分圖匹配(匈牙利演算法的DFS實現)
//初始化:g[][]是兩邊頂點的劃分情況,linker[]是該頂點所匹配的結點
//建立g[i][j]表示i->j的有向邊就可以了,是左邊向右邊的匹配
//g沒有邊相連則初始化為0
//uN是匹配左邊的頂點數,vN是匹配右邊的頂點數
//呼叫:res=hungary();輸出最大匹配數
//優點:適用於稠密圖,DFS找增廣路,實現簡潔易於理解
//時間複雜度:O(VE)
const int MAXN=510;
int uN,vN;//左邊頂點數,右邊頂點數。
int g[MAXN][MAXN];
int linker[MAXN];
bool used[MAXN];
bool dfs(int u)//從左邊開始找增廣路
{
    int v;
    for(v=0;v<vN;v++)//這個頂點編號從0開始,若要從1開始需要修改
      if(g[u][v]&&!used[v])
      {
          used[v]=true;
          if(linker[v]==-1||dfs(linker[v]))
          {//找增廣路,反向
              linker[v]=u;
              return true;
          }
      }
    return false;//這個不要忘了,經常忘記這句
}
int hungary()
{
    int res=0;
    int u;
    memset(linker,-1,sizeof(linker));
    for(u=0;u<uN;u++)
    {
        memset(used,0,sizeof(used));
        if(dfs(u)) res++;
    }
    return res;
}