C++ STL原始碼剖析——stl_alloc.h
阿新 • • 發佈:2019-01-07
本文節轉自:http://www.cnblogs.com/lfsblack/archive/2012/11/10/2764334.htmlstl_alloc.h # // Comment By: 凝霜 # // E-mail: [email protected] # // Blog: http://blog.csdn.net/mdl13412 # # // 特別說明: SGI STL的allocator在我的編譯環境下不使用記憶體池 # // 而其記憶體池不進行記憶體釋放操作, 其釋放時機為程式退出或者stack unwinding # // 由作業系統保證記憶體的回收 # # /* # * Copyright (c) 1996-1997 # * Silicon Graphics Computer Systems, Inc. # * # * Permission to use, copy, modify, distribute and sell this software # * and its documentation for any purpose is hereby granted without fee, # * provided that the above copyright notice appear in all copies and # * that both that copyright notice and this permission notice appear # * in supporting documentation. Silicon Graphics makes no # * representations about the suitability of this software for any # * purpose. It is provided "as is" without express or implied warranty. # */ # # /* NOTE: This is an internal header file, included by other STL headers. # * You should not attempt to use it directly. # */ # # #ifndef __SGI_STL_INTERNAL_ALLOC_H # #define __SGI_STL_INTERNAL_ALLOC_H # # #ifdef __SUNPRO_CC # # define __PRIVATE public # // SUN編譯器對private限制過多, 需要開放許可權 # #else # # define __PRIVATE private # #endif # # // 為了保證相容性, 對於不支援模板類靜態成員的情況, 使用malloc()進行記憶體分配 # #ifdef __STL_STATIC_TEMPLATE_MEMBER_BUG # # define __USE_MALLOC # #endif # # // 實現了一些標準的node allocator # // 但是不同於C++標準或者STL原始STL標準 # // 這些allocator沒有封裝不同指標型別 # // 事實上我們假定只有一種指標理性 # // allocation primitives意在分配不大於原始STL allocator分配的獨立的物件 # # #if 0 # # include <new> # # define __THROW_BAD_ALLOC throw bad_alloc # #elif !defined(__THROW_BAD_ALLOC) # # include <iostream.h> # # define __THROW_BAD_ALLOC cerr << "out of memory" << endl; exit(1) # #endif # # #ifndef __ALLOC # # define __ALLOC alloc # #endif # #ifdef __STL_WIN32THREADS # # include <windows.h> # #endif # # #include <stddef.h> # #include <stdlib.h> # #include <string.h> # #include <assert.h> # #ifndef __RESTRICT # # define __RESTRICT # #endif # # // 多執行緒支援 # // __STL_PTHREADS // GCC編譯器 # // _NOTHREADS // 不支援多執行緒 # // __STL_SGI_THREADS // SGI機器專用 # // __STL_WIN32THREADS // MSVC編譯器 # #if !defined(__STL_PTHREADS) && !defined(_NOTHREADS) \ # && !defined(__STL_SGI_THREADS) && !defined(__STL_WIN32THREADS) # # define _NOTHREADS # #endif # # # ifdef __STL_PTHREADS # // POSIX Threads # // This is dubious, since this is likely to be a high contention # // lock. Performance may not be adequate. # # include <pthread.h> # # define __NODE_ALLOCATOR_LOCK \ # if (threads) pthread_mutex_lock(&__node_allocator_lock) # # define __NODE_ALLOCATOR_UNLOCK \ # if (threads) pthread_mutex_unlock(&__node_allocator_lock) # # define __NODE_ALLOCATOR_THREADS true # # define __VOLATILE volatile // Needed at -O3 on SGI # # endif # # ifdef __STL_WIN32THREADS # // The lock needs to be initialized by constructing an allocator # // objects of the right type. We do that here explicitly for alloc. # # define __NODE_ALLOCATOR_LOCK \ # EnterCriticalSection(&__node_allocator_lock) # # define __NODE_ALLOCATOR_UNLOCK \ # LeaveCriticalSection(&__node_allocator_lock) # # define __NODE_ALLOCATOR_THREADS true # # define __VOLATILE volatile // may not be needed # # endif /* WIN32THREADS */ # # ifdef __STL_SGI_THREADS # // This should work without threads, with sproc threads, or with # // pthreads. It is suboptimal in all cases. # // It is unlikely to even compile on nonSGI machines. # # extern "C" { # extern int __us_rsthread_malloc; # } # // The above is copied from malloc.h. Including <malloc.h> # // would be cleaner but fails with certain levels of standard # // conformance. # # define __NODE_ALLOCATOR_LOCK if (threads && __us_rsthread_malloc) \ # { __lock(&__node_allocator_lock); } # # define __NODE_ALLOCATOR_UNLOCK if (threads && __us_rsthread_malloc) \ # { __unlock(&__node_allocator_lock); } # # define __NODE_ALLOCATOR_THREADS true # # define __VOLATILE volatile // Needed at -O3 on SGI # # endif # # ifdef _NOTHREADS # // Thread-unsafe # # define __NODE_ALLOCATOR_LOCK # # define __NODE_ALLOCATOR_UNLOCK # # define __NODE_ALLOCATOR_THREADS false # # define __VOLATILE # # endif # # __STL_BEGIN_NAMESPACE # # #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32) # #pragma set woff 1174 # #endif # # // Malloc-based allocator. Typically slower than default alloc below. # // Typically thread-safe and more storage efficient. # #ifdef __STL_STATIC_TEMPLATE_MEMBER_BUG # # ifdef __DECLARE_GLOBALS_HERE # void (* __malloc_alloc_oom_handler)() = 0; # // g++ 2.7.2 does not handle static template data members. # # else # extern void (* __malloc_alloc_oom_handler)(); # # endif # #endif # # // 一級配置器 # template <int inst> # class __malloc_alloc_template # { # private: # // 用於在設定了__malloc_alloc_oom_handler情況下迴圈分配記憶體, # // 直到成功分配 # static void *oom_malloc(size_t); # static void *oom_realloc(void *, size_t); # # // 如果編譯器支援模板類靜態成員, 則使用錯誤處理函式, 類似C++的set_new_handler() # // 預設值為0, 如果不設定, 則記憶體分配失敗時直接__THROW_BAD_ALLOC # #ifndef __STL_STATIC_TEMPLATE_MEMBER_BUG # static void (* __malloc_alloc_oom_handler)(); # #endif # # public: # // 分配指定大小的記憶體(size_t n), 如果分配失敗, 則進入迴圈分配階段 # // 迴圈分配前提是要保證正確設定了__malloc_alloc_oom_handler # static void * allocate(size_t n) # { # void *result = malloc(n); # if (0 == result) result = oom_malloc(n); # return result; # } # # // 後面的size_t是為了相容operator delele # static void deallocate(void *p, size_t /* n */) # { free(p); } # # // 重新分配記憶體大小, 第二個引數是為了相容operator new # static void * reallocate(void *p, size_t /* old_sz */, size_t new_sz) # { # void * result = realloc(p, new_sz); # if (0 == result) result = oom_realloc(p, new_sz); # return result; # } # # // 設定錯誤處理函式, 返回原來的函式指標 # // 不屬於C++標準規定的介面 # static void (* set_malloc_handler(void (*f)()))() # { # void (* old)() = __malloc_alloc_oom_handler; # __malloc_alloc_oom_handler = f; # return(old); # } # }; # # // malloc_alloc out-of-memory handling # # #ifndef __STL_STATIC_TEMPLATE_MEMBER_BUG # template <int inst> # void (* __malloc_alloc_template<inst>::__malloc_alloc_oom_handler)() = 0; # #endif # # // 如果設定了__malloc_alloc_oom_handler, 則首先執行錯誤處理函式, 然後迴圈分配直到成功 # // 如果未設定__malloc_alloc_oom_handler, __THROW_BAD_ALLOC # template <int inst> # void * __malloc_alloc_template<inst>::oom_malloc(size_t n) # { # void (* my_malloc_handler)(); # void *result; # # for (;;) { # my_malloc_handler = __malloc_alloc_oom_handler; # if (0 == my_malloc_handler) { __THROW_BAD_ALLOC; } # (*my_malloc_handler)(); # result = malloc(n); # if (result) return(result); # } # } # # template <int inst> # void * __malloc_alloc_template<inst>::oom_realloc(void *p, size_t n) # { # void (* my_malloc_handler)(); # void *result; # # for (;;) { # my_malloc_handler = __malloc_alloc_oom_handler; # if (0 == my_malloc_handler) { __THROW_BAD_ALLOC; } # (*my_malloc_handler)(); # result = realloc(p, n); # if (result) return(result); # } # } # # // 這個版本的STL並沒有使用non-type模板引數 # typedef __malloc_alloc_template<0> malloc_alloc; # # // 這個類中的介面其實就是STL標準中的allocator的介面 # // 實際上所有的SGI STL都使用這個進行記憶體配置 # // 例如: stl_vector.h中 # // template <class T, class Alloc = alloc> # // class vector # // { # // ... # // protected: # // typedef simple_alloc<value_type, Alloc> data_allocator; # // ... # //}; # template<class T, class Alloc> # class simple_alloc # { # public: # static T *allocate(size_t n) # { return 0 == n? 0 : (T*) Alloc::allocate(n * sizeof (T)); } # static T *allocate(void) # { return (T*) Alloc::allocate(sizeof (T)); } # static void deallocate(T *p, size_t n) # { if (0 != n) Alloc::deallocate(p, n * sizeof (T)); } # static void deallocate(T *p) # { Alloc::deallocate(p, sizeof (T)); } # }; # # // Allocator adaptor to check size arguments for debugging. # // Reports errors using assert. Checking can be disabled with # // NDEBUG, but it's far better to just use the underlying allocator # // instead when no checking is desired. # // There is some evidence that this can confuse Purify. # template <class Alloc> # class debug_alloc # { # private: # enum {extra = 8}; // Size of space used to store size. Note # // that this must be large enough to preserve # // alignment. # # public: # # // extra 保證不會分配為0的記憶體空間, 而且要保證記憶體對齊 # // 把分配記憶體的最前面設定成n的大小, 用於後面校驗 # // 記憶體對齊的作用就是保護前面extra大小的資料不被修改 # static void * allocate(size_t n) # { # char *result = (char *)Alloc::allocate(n + extra); # *(size_t *)result = n; # return result + extra; # } # # // 如果*(size_t *)real_p != n則肯定發生向前越界 # static void deallocate(void *p, size_t n) # { # char * real_p = (char *)p - extra; # assert(*(size_t *)real_p == n); # Alloc::deallocate(real_p, n + extra); # } # # static void * reallocate(void *p, size_t old_sz, size_t new_sz) # { # char * real_p = (char *)p - extra; # assert(*(size_t *)real_p == old_sz); # char * result = (char *) # Alloc::reallocate(real_p, old_sz + extra, new_sz + extra); # *(size_t *)result = new_sz; # return result + extra; # } # }; # # # ifdef __USE_MALLOC # # typedef malloc_alloc alloc; # typedef malloc_alloc single_client_alloc; # # # else # # // 預設的node allocator # // 如果有合適的編譯器, 速度上與原始的STL class-specific allocators大致等價 # // 但是具有產生更少記憶體碎片的優點 # // Default_alloc_template引數是用於實驗性質的, 在未來可能會消失 # // 客戶只能在當下使用alloc # // # // 重要的實現屬性: # // 1. 如果客戶請求一個size > __MAX_BYTE的物件, 則直接使用malloc()分配 # // 2. 對於其它情況下, 我們將請求物件的大小按照記憶體對齊向上舍入ROUND_UP(requested_size) # // TODO: 待翻譯 # // 2. In all other cases, we allocate an object of size exactly # // ROUND_UP(requested_size). Thus the client has enough size # // information that we can return the object to the proper free list # // without permanently losing part of the object. # // # # // 第一個模板引數指定是否有多於一個執行緒使用本allocator # // 在一個default_alloc例項中分配物件, 在另一個deallocate例項中釋放物件, 是安全的 # // 這有效的轉換其所有權到另一個物件 # // 這可能導致對我們引用的區域產生不良影響 # // 第二個模板引數僅僅用於建立多個default_alloc例項 # // 不同容器使用不同allocator例項建立的node擁有不同型別, 這限制了此方法的通用性 # # // Sun C++ compiler需要在類外定義這些列舉 # #ifdef __SUNPRO_CC # // breaks if we make these template class members: # enum {__ALIGN = 8}; # enum {__MAX_BYTES = 128}; # enum {__NFREELISTS = __MAX_BYTES/__ALIGN}; # #endif # # template <bool threads, int inst> # class __default_alloc_template # { # private: # // Really we should use static const int x = N # // instead of enum { x = N }, but few compilers accept the former. # # ifndef __SUNPRO_CC # enum {__ALIGN = 8}; # enum {__MAX_BYTES = 128}; # enum {__NFREELISTS = __MAX_BYTES/__ALIGN}; # # endif # // 向上舍入操作 # // 解釋一下, __ALIGN - 1指明的是實際記憶體對齊的粒度 # // 例如__ALIGN = 8時, 我們只需要7就可以實際表示8個數(0~7) # // 那麼~(__ALIGN - 1)就是進行舍入的粒度 # // 我們將(bytes) + __ALIGN-1)就是先進行進位, 然後截斷 # // 這就保證了我是向上舍入的 # // 例如byte = 100, __ALIGN = 8的情況 # // ~(__ALIGN - 1) = (1 000)B # // ((bytes) + __ALIGN-1) = (1 101 011)B # // (((bytes) + __ALIGN-1) & ~(__ALIGN - 1)) = (1 101 000 )B = (104)D # // 104 / 8 = 13, 這就實現了向上舍入 # // 對於byte剛好滿足記憶體對齊的情況下, 結果保持byte大小不變 # // 記得《Hacker's Delight》上面有相關的計算 # // 這個表示式與下面給出的等價 # // ((((bytes) + _ALIGN - 1) * _ALIGN) / _ALIGN) # // 但是SGI STL使用的方法效率非常高 # static size_t ROUND_UP(size_t bytes) # { # return (((bytes) + __ALIGN-1) & ~(__ALIGN - 1)); # } # __PRIVATE: # // 管理記憶體連結串列用 # // 為了盡最大可能減少記憶體的使用, 這裡使用一個union # // 如果使用第一個成員, 則指向另一個相同的union obj # // 而如果使用第二個成員, 則指向實際的記憶體區域 # // 這樣就實現了連結串列結點只使用一個指標的大小空間, 卻能同時做索引和指向記憶體區域 # // 這個技巧性非常強, 值得學習 # union obj # { # union obj * free_list_link; # char client_data[1]; /* The client sees this. */ # }; # private: # # ifdef __SUNPRO_CC # static obj * __VOLATILE free_list[]; # // Specifying a size results in duplicate def for 4.1 # # else # // 這裡分配的free_list為16 # // 對應的記憶體鏈容量分別為8, 16, 32 ... 128 # static obj * __VOLATILE free_list[__NFREELISTS]; # # endif # // 根據待待分配的空間大小, 在free_list中選擇合適的大小 # static size_t FREELIST_INDEX(size_t bytes) # { # return (((bytes) + __ALIGN-1)/__ALIGN - 1); # } # # // Returns an object of size n, and optionally adds to size n free list. # static void *refill(size_t n); # // Allocates a chunk for nobjs of size "size". nobjs may be reduced # // if it is inconvenient to allocate the requested number. # static char *chunk_alloc(size_t size, int &nobjs); # # // 記憶體池 # static char *start_free; // 記憶體池起始點 # static char *end_free; // 記憶體池結束點 # static size_t heap_size; // 已經在堆上分配的空間大小 # # // 下面三個條件編譯給多執行緒條件下使用的鎖提供必要支援 # # ifdef __STL_SGI_THREADS # static volatile unsigned long __node_allocator_lock; # static void __lock(volatile unsigned long *); # static inline void __unlock(volatile unsigned long *); # # endif # # # ifdef __STL_PTHREADS # static pthread_mutex_t __node_allocator_lock; # # endif # # # ifdef __STL_WIN32THREADS # static CRITICAL_SECTION __node_allocator_lock; # static bool __node_allocator_lock_initialized; # # public: # __default_alloc_template() { # // This assumes the first constructor is called before threads # // are started. # if (!__node_allocator_lock_initialized) { # InitializeCriticalSection(&__node_allocator_lock); # __node_allocator_lock_initialized = true; # } # } # private: # # endif # # // 用於多執行緒環境下鎖定操作用 # class lock # { # public: # lock() { __NODE_ALLOCATOR_LOCK; } # ~lock() { __NODE_ALLOCATOR_UNLOCK; } # }; # friend class lock; # # public: # /* n must be > 0 */ # static void * allocate(size_t n) # { # obj * __VOLATILE * my_free_list; # obj * __RESTRICT result; # # // 如果待分配物件大於__MAX_BYTES, 使用一級配置器分配 # if (n > (size_t) __MAX_BYTES) { # return(malloc_alloc::allocate(n)); # } # my_free_list = free_list + FREELIST_INDEX(n); # // Acquire the lock here with a constructor call. # // This ensures that it is released in exit or during stack # // unwinding. # # ifndef _NOTHREADS # /*REFERENCED*/ # lock lock_instance; # # endif # result = *my_free_list; # // 如果是第一次使用這個容量的連結串列, 則分配此連結串列需要的記憶體 # // 如果不是, 則判斷記憶體吃容量, 不夠則分配 # if (result == 0) { # void *r = refill(ROUND_UP(n)); # return r; # } # *my_free_list = result -> free_list_link; # return (result); # }; # # /* p may not be 0 */ # static void deallocate(void *p, size_t n) # { # obj *q = (obj *)p; # obj * __VOLATILE * my_free_list; # # // 對於大於__MAX_BYTES的物件, 因為採用的是一級配置器分配, 所以同樣使用一級配置器釋放 # if (n > (size_t) __MAX_BYTES) { # malloc_alloc::deallocate(p, n); # return; # } # my_free_list = free_list + FREELIST_INDEX(n); # // acquire lock # # ifndef _NOTHREADS # /*REFERENCED*/ # lock lock_instance; # # endif /* _NOTHREADS */ # q -> free_list_link = *my_free_list; # *my_free_list = q; # // lock is released here # } # # static void * reallocate(void *p, size_t old_sz, size_t new_sz); # } ; # # typedef __default_alloc_template<__NODE_ALLOCATOR_THREADS, 0> alloc; # typedef __default_alloc_template<false, 0> single_client_alloc; # # // 每次分配一大塊記憶體, 防止多次分配小記憶體塊帶來的記憶體碎片 # // 進行分配操作時, 根據具體環境決定是否加鎖 # // 我們假定要分配的記憶體滿足記憶體對齊要求 # template <bool threads, int inst> # char* # __default_alloc_template<threads, inst>::chunk_alloc(size_t size, int& nobjs) # { # char * result; # size_t total_bytes = size * nobjs; # size_t bytes_left = end_free - start_free; // 計算記憶體池剩餘容量 # # // 如果記憶體池中剩餘記憶體>=需要分配的內記憶體, 返回start_free指向的記憶體塊, # // 並且重新設定記憶體池起始點 # if (bytes_left >= total_bytes) { # result = start_free; # start_free += total_bytes; # return(result); # } # // 如果記憶體吃中剩餘的容量不夠分配, 但是能至少分配一個節點時, # // 返回所能分配的最多的節點, 返回start_free指向的記憶體塊 # // 並且重新設定記憶體池起始點 # else if (bytes_left >= size) { # nobjs = bytes_left/size; # total_bytes = size * nobjs; # result = start_free; # start_free += total_bytes; # return(result); # } # // 記憶體池剩餘記憶體連一個節點也不夠分配 # else { # size_t bytes_to_get = 2 * total_bytes + ROUND_UP(heap_size >> 4); # // 將剩餘的記憶體分配給指定的free_list[FREELIST_INDEX(bytes_left)] # if (bytes_left > 0) { # obj * __VOLATILE * my_free_list = # free_list + FREELIST_INDEX(bytes_left); # # ((obj *)start_free) -> free_list_link = *my_free_list; # *my_free_list = (obj *)start_free; # } # start_free = (char *)malloc(bytes_to_get); # // 分配失敗, 搜尋原來已經分配的記憶體塊, 看是否有大於等於當前請求的記憶體塊 # if (0 == start_free) { # int i; # obj * __VOLATILE * my_free_list, *p; # // Try to make do with what we have. That can't # // hurt. We do not try smaller requests, since that tends # // to result in disaster on multi-process machines. # for (i = size; i <= __MAX_BYTES; i += __ALIGN) { # my_free_list = free_list + FREELIST_INDEX(i); # p = *my_free_list; # // 找到了一個, 將其加入記憶體池中 # if (0 != p) { # *my_free_list = p -> free_list_link; # start_free = (char *)p; # end_free = start_free + i; # // 記憶體池更新完畢, 重新分配需要的記憶體 # return(chunk_alloc(size, nobjs)); # // Any leftover piece will eventually make it to the # // right free list. # } # } # # // 再次失敗, 直接呼叫一級配置器分配, 期待異常處理函式能提供幫助 # // 不過在我看來, 記憶體分配失敗進行其它嘗試已經沒什麼意義了, # // 最好直接log, 然後讓程式崩潰 # end_free = 0; // In case of exception. # start_free = (char *)malloc_alloc::allocate(bytes_to_get); # } # heap_size += bytes_to_get; # end_free = start_free + bytes_to_get; # // 記憶體池更新完畢, 重新分配需要的記憶體 # return(chunk_alloc(size, nobjs)); # } # } # # # // 返回一個大小為n的物件, 並且加入到free_list[FREELIST_INDEX(n)] # // 進行分配操作時, 根據具體環境決定是否加鎖 # // 我們假定要分配的記憶體滿足記憶體對齊要求 # template <bool threads, int inst> # void* __default_alloc_template<threads, inst>::refill(size_t n) # { # int nobjs = 20; # char * chunk = chunk_alloc(n, nobjs); # obj * __VOLATILE * my_free_list; # obj * result; # obj * current_obj, * next_obj; # int i; # # // 如果記憶體池僅僅只夠分配一個物件的空間, 直接返回即可 # if (1 == nobjs) return(chunk); # # // 記憶體池能分配更多的空間 # my_free_list = free_list + FREELIST_INDEX(n); # # // 在chunk的空間中建立free_list # result = (obj *)chunk; # *my_free_list = next_obj = (obj *)(chunk + n); # for (i = 1; ; i++) { # current_obj = next_obj; # next_obj = (obj *)((char *)next_obj + n); # if (nobjs - 1 == i) { # current_obj -> free_list_link = 0; # break; # } else { # current_obj -> free_list_link = next_obj; # } # } # return(result); # } # # template <bool threads, int inst> # void* # __default_alloc_template<threads, inst>::reallocate(void *p, # size_t old_sz, # size_t new_sz) # { # void * result; # size_t copy_sz; # # // 如果old_size和new_size均大於__MAX_BYTES, 則直接呼叫realloc() # // 因為這部分記憶體不是經過記憶體池分配的 # if (old_sz > (size_t) __MAX_BYTES && new_sz > (size_t) __MAX_BYTES) { # return(realloc(p, new_sz)); # } # // 如果ROUND_UP(old_sz) == ROUND_UP(new_sz), 記憶體大小沒變化, 不進行重新分配 # if (ROUND_UP(old_sz) == ROUND_UP(new_sz)) return(p); # // 進行重新分配並拷貝資料 # result = allocate(new_sz); # copy_sz = new_sz > old_sz? old_sz : new_sz; # memcpy(result, p, copy_sz); # deallocate(p, old_sz); # return(result); # } # # #ifdef __STL_PTHREADS # template <bool threads, int inst> # pthread_mutex_t # __default_alloc_template<threads, inst>::__node_allocator_lock # = PTHREAD_MUTEX_INITIALIZER; # #endif # # #ifdef __STL_WIN32THREADS # template <bool threads, int inst> CRITICAL_SECTION # __default_alloc_template<threads, inst>::__node_allocator_lock; # # template <bool threads, int inst> bool # __default_alloc_template<threads, inst>::__node_allocator_lock_initialized # = false; # #endif # # #ifdef __STL_SGI_THREADS # __STL_END_NAMESPACE # #include <mutex.h> # #include <time.h> # __STL_BEGIN_NAMESPACE # // Somewhat generic lock implementations. We need only test-and-set # // and some way to sleep. These should work with both SGI pthreads # // and sproc threads. They may be useful on other systems. # template <bool threads, int inst> # volatile unsigned long # __default_alloc_template<threads, inst>::__node_allocator_lock = 0; # # #if __mips < 3 || !(defined (_ABIN32) || defined(_ABI64)) || defined(__GNUC__) # # define __test_and_set(l,v) test_and_set(l,v) # #endif # # template <bool threads, int inst> # void # __default_alloc_template<threads, inst>::__lock(volatile unsigned long *lock) # { # const unsigned low_spin_max = 30; // spin cycles if we suspect uniprocessor # const unsigned high_spin_max = 1000; // spin cycles for multiprocessor # static unsigned spin_max = low_spin_max; # unsigned my_spin_max; # static unsigned last_spins = 0; # unsigned my_last_spins; # static struct timespec ts = {0, 1000}; # unsigned junk; # # define __ALLOC_PAUSE junk *= junk; junk *= junk; junk *= junk; junk *= junk # int i; # # if (!__test_and_set((unsigned long *)lock, 1)) { # return; # } # my_spin_max = spin_max; # my_last_spins = last_spins; # for (i = 0; i < my_spin_max; i++) { # if (i < my_last_spins/2 || *lock) { # __ALLOC_PAUSE; # continue; # } # if (!__test_and_set((unsigned long *)lock, 1)) { # // got it! # // Spinning worked. Thus we're probably not being scheduled # // against the other process with which we were contending. # // Thus it makes sense to spin longer the next time. # last_spins = i; # spin_max = high_spin_max; # return; # } # } # // We are probably being scheduled against the other process. Sleep. # spin_max = low_spin_max; # for (;;) { # if (!__test_and_set((unsigned long *)lock, 1)) { # return; # } # nanosleep(&ts, 0); # } # } # # template <bool threads, int inst> # inline void # __default_alloc_template<threads, inst>::__unlock(volatile unsigned long *lock) # { # # if defined(__GNUC__) && __mips >= 3 # asm("sync"); # *lock = 0; # # elif __mips >= 3 && (defined (_ABIN32) || defined(_ABI64)) # __lock_release(lock); # # else # *lock = 0; # // This is not sufficient on many multiprocessors, since # // writes to protected variables and the lock may be reordered. # # endif # } # #endif # # // 記憶體池起始位置 # template <bool threads, int inst> # char *__default_alloc_template<threads, inst>::start_free = 0; # // 記憶體池結束位置 # template <bool threads, int inst> # char *__default_alloc_template<threads, inst>::end_free = 0; # # template <bool threads, int inst> # size_t __default_alloc_template<threads, inst>::heap_size = 0; # // 記憶體池容量索引陣列 # template <bool threads, int inst> # __default_alloc_template<threads, inst>::obj * __VOLATILE # __default_alloc_template<threads, inst> ::free_list[ # # ifdef __SUNPRO_CC # __NFREELISTS # # else # __default_alloc_template<threads, inst>::__NFREELISTS # # endif # ] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; # // The 16 zeros are necessary to make version 4.1 of the SunPro # // compiler happy. Otherwise it appears to allocate too little # // space for the array. # # # ifdef __STL_WIN32THREADS # // Create one to get critical section initialized. # // We do this onece per file, but only the first constructor # // does anything. # static alloc __node_allocator_dummy_instance; # # endif # # #endif /* ! __USE_MALLOC */ # # #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32) # #pragma reset woff 1174 # #endif # # __STL_END_NAMESPACE # # #undef __PRIVATE # # #endif /* __SGI_STL_INTERNAL_ALLOC_H */ # # // Local Variables: # // mode:C++ # // End: